header advert
Orthopaedic Proceedings Logo

Receive monthly Table of Contents alerts from Orthopaedic Proceedings

Comprehensive article alerts can be set up and managed through your account settings

View my account settings

Visit Orthopaedic Proceedings at:



Full Access



8th Combined Meeting Of Orthopaedic Research Societies (CORS)



Computer assisted surgery (CAS) during total knee arthroplasty (TKA) is known to improve prosthetic alignment in coronal and sagittal plane. In this systematic review, no evidence is found that CAS also improves axial component orientation when used during TKA.


Primary total knee arthroplasty (TKA) is a safe and cost-effective treatment for end-stage knee osteoarthritis. Correct prosthesis alignment is essential, since malpositioning of the prosthesis leads to worse functional outcome and increased wear, which compromises survival of the prosthesis. Computer assisted surgery (CAS) has been developed to enhance prosthesis alignment during TKA. CAS significantly improves postoperative coronal and sagittal alignment compared to conventional TKA. However, the influence of CAS on rotational alignment is a matter of debate. Therefore purpose of this review is to assess published evidence on the influence of CAS during TKA on postoperative rotational alignment.

Patients and Methods

This review was performed according to the PRISMA Statement. An electronic literature search was performed in Pubmed, Medline and Embase on studies published between 1991 and April 2013. Studies were included when rotational alignment following imageless CAS-TKA was compared to rotational alignment following conventional TKA. At least one of the following outcome measures had to be assessed: 1) rotational alignment of the femoral component, 2) rotational alignment of the tibial component, 3) tibiofemoral mismatch, 4) the amount of rotational outliers of the femoral component, 5) the amount of rotational outliers of the tibial component. Study selection was performed in two stages and data extraction and methodological quality assessment was conducted independently by two reviewers. Standardized mean difference (SMD) with 95% confidence interval (95% CI) was calculated for continuous variables. The SMDs were interpreted according to Cohen: an SMD of 0.2–0.4 was considered a small effect; 0.5–0.7 was considered moderate; and ≥ 0.8 was considered a large effect. For the comparison of the amount of outliers for femoral and tibial component rotation, the Odds ratio (OR) and 95% CI was calculated. The OR represents the odds of outliers occurring in the CAS group compared with the conventional group. An OR of < 1 favors the CAS group. The OR is considered statistically significant when the 95% CI does not include the value of 1.


Seventeen studies met the inclusion criteria. One study was considered of high, 15 studies of medium and one study of low methodological quality. SMD for rotation of the femoral component was −0.07 (−0.19–0.04). For rotation of the tibial component, the SMD was 0.11 (−0.01–0.24). Regarding tibiofemoral mismatch, the SMD was −0.27 (−0.57–0.02). For femoral outliers, the OR was 1.05 (0.78–1.43) and for tibial outliers the OR was 1.12 (0.86–1.47).

Discussion / Conclusion

Results of this review show no evidence that CAS-TKA leads to better rotational alignment of the femoral or tibial component or tibiofemoral mismatch. Also no evidence was found that CAS results in a decrease of the amount of outliers regarding femoral or tibial component orientation. However, these conclusions have to be interpreted with caution. The number of included studies was low and strong heterogeneity existed between the studies. Of the 17 included studies, only one study was considered of high methodological quality. Moreover, different methods for assessing tibial component rotation have been used in the studies included.