Advertisement for orthosearch.org.uk
Results 1 - 10 of 10
Results per page:
Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_14 | Pages 11 - 11
1 Dec 2022
Bergomi A Adriani M De Filippo F Manni F Motta M Saccomanno M Milano G
Full Access

Rotator cuff repair has excellent clinical outcomes but continues to be a challenge when it comes to large and massive tears as well as revision procedures. Reported symptomatic retear rates are still too high to be acceptable. The purpose of the present study was to evaluate the effectiveness of a combination of augmentation techniques consisting of microfractures of the greater tuberosity, extracellular matrix (ECM) patch graft and subsequent platelet concentrate (PC) subacromial injections in revision rotator cuff repair. The study was designed as a retrospective comparative study on prospectively collected data from a consecutive cohort of patients. All patients who underwent arthroscopic revision rotator cuff repair for symptomatic failure of previous posterosuperior rotator cuff repair were considered eligible for the study. Symptomatic failure had been diagnosed according to clinical examination and confirmed by magnetic resonance imaging (MRI). Structural integrity had been assessed on MRI and classified according to Sugaya classification. Only patients affected by stage IV-V were considered eligible. Tear reparability was confirmed during arthroscopy. Only patients with a minimum 2 years follow-up were included. Patients were divided in two groups. In group 1 (control group) a standard arthroscopic revision and microfractures of the greater tuberosity were performed; in group 2 (experimental group), microfractures of the greater tuberosity and a ECM patch graft were used to enhance tendon repair, followed by postoperative PC injections. Minimum follow-up was 12 months. Primary outcome was the Constant-Murley score (CMS) normalized for age and gender. Subjective outcome was assessed with the Disabilities of the Arm, Shoulder and Hand (DASH) score in its short version (Quick-DASH). Tendon integrity was assessed with MRI at 6 months after surgery. Comparison between groups for all discrete variables at baseline and at follow-up was carried out with the Student's t-test for normally distributed data, otherwise Mann-Whitney U-test was used. Within-group differences (baseline vs follow-up) for discrete variables were analyzed by paired t-test, or by Wilcoxon signed-rank test in case of data with non-normal distribution. Differences for categorical variables were assessed by chi-squared test. Significance was considered for p values < 0.05. Forty patients were included in the study (20 patients for each group). The mean follow-up was 13 ± 1.6 months. No patients were lost at the follow up. Comparison between groups did not show significant differences for baseline characteristics. At follow-up, mean CMS was 80.7 ± 16.6 points in group 1 and 91.5 ± 11.5 points in group 2 (p= 0.022). Mean DASH score was 28.6 ± 21.6 points in group 1 and 20.1 ± 17.4 points in group 2 (p= 0.178). Post-operative MRI showed 6 healed shoulders in Group 1 and 16 healed shoulders in Group 2 (p<0.004). No postoperative complications were reported in both groups. The combination of microfractures of the greater tuberosity, ECM patch graft, and subsequent PC subacromial injections is an effective strategy in improving tendon healing rate


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_7 | Pages 28 - 28
4 Apr 2023
Bolam S Park Y Konar S Callon K Workman J Monk P Coleman B Cornish J Vickers M Munro J Musson D
Full Access

Obesity is associated with poor outcomes and increased risk of failure after rotator cuff (RC) repair surgery. The effect of diet-induced obesity (DIO) on enthesis healing has not been well characterised and whether its effects can be reversed with dietary intervention is unknown. We hypothesised that DIO would result in inferior enthesis healing in a rat model of RC repair and that dietary intervention in the peri-operative period would improve enthesis healing.

A total of 78 male Sprague-Dawley rats were divided into three weight-matched groups from weaning and fed either: control diet (CD), high-fat diet (HFD), or HFD until surgery, then CD thereafter (HF-CD). After 12 weeks the left supraspinatus tendon was detached, followed by immediate surgical repair. At 2 and 12 weeks post-surgery, animals were cullers and RCs harvested for biomechanical and histological evaluation. Body composition and metabolic markers were assessed via DEXA and plasma analyses, respectively.

DIO was established in the HFD and HF-CD groups prior to surgery, and subsequently reversed in the HF-CD group after surgery. At 12 weeks post-surgery, plasma leptin concentrations were higher in the HFD group compared to the CD group (5.28 vs. 2.91ng/ml, P=0.003). Histologically, the appearance of the repaired entheses was poorer in both the HFD and HF-CD compared to the CD group at 12 weeks (overall histological score 6.20 (P=0.008), 4.98 (P=0.001) and 8.68 out of 15, respectively). The repaired entheses in the HF-CD group had significantly lower (26.4 N, P=0.028) load-at-failure 12 weeks post-surgery compared to the CD group (34.4 N); while the HFD group was low, but not significantly different (28.1 N, P=0.096). Body mass at the time of surgery, plasma leptin and body fat percentage were negatively correlated with histological scores and plasma leptin with load-at-failure 12 weeks post-surgery.

DIO impaired enthesis healing in this rat RC repair model, with inferior biomechanical and histological outcomes. Restoring normal weight with dietary change after surgery did not improve healing outcomes. Exploring interventions that improve the metabolic state of obese patients and counselling patients appropriately about their modest expectations after repair should be considered.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_7 | Pages 39 - 39
4 Apr 2023
Lim W Lie D Chou S Lie H Yew A
Full Access

This study aims to investigate the mechanical properties of a rotator cuff tear repaired with a polypropylene interposition graft in an ovine infraspinatus ex-vivo model.

Twenty fresh shoulders from skeletally mature sheep were used in this study. A tear size of 20 mm from the tendon joint was created in the infraspinatus tendon to simulate a large tear in fifteen specimens. This was repaired with a polypropylene mesh used as an interposition graft between the ends of the tendon. Eight specimens were secured with mattress stitches while seven were secured to the remnant tendon on the greater tuberosity side by continuous stitching. Remaining five specimens with an intact tendon served as a control group. All specimens underwent cyclic loading with a universal testing machine to determine the ultimate failure load and gap distance.

Gap distance increased with progressive cyclic loading through 3000 cycles for all repaired specimens. Mean gap distance after 3000 cycles for both continuous and mattress groups are 1.7 mm and 4.2 mm respectively (P = .001). Significantly higher mean ultimate failure load was also observed with 549.2 N in the continuous group, 426.6 N in the mattress group and 370 N in the intact group.

The use of a polypropylene mesh as an interposition graft for large irreparable rotator cuff tears is biomechanically suitable and results in a robust repair that is comparable to an intact rotator cuff tendon. When paired with a continuous suturing technique, it demonstrates significantly resultant superior biomechanical properties that may potentially reduce re-tear rates after repairing large or massive rotator cuff tears.


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_15 | Pages 125 - 125
1 Nov 2018
Zhao C
Full Access

A rotator cuff tear is one of the most common traumatic and degenerative tendon injuries resulting in over 4.5 million physician visits in the US alone. Functional restoration of rotator cuff defects usually requires surgical repair, estimated at 300,000 cased in the US annually. However, postoperative retear of repaired tendons ranges from 20% in small to medium tears to over 90% in large and massive tears. Recently, augmentation with grafting materials to strengthen a reparable tear or to bridge an unrepairable defect has become a common and attractive strategy to reduce the retear rate, especially for large or massive tears. Current graft materials, however, have encountered great challenges in achieving these goals. To meet these challenges, we have developed an engineered tendon with layered tendon-fibrocartilage-bone composite (TFBC) from patellar-tibia unit revitalized by seeding bone marrow derived stem cells (BMDSCs) within the slices, and then reassembled to an engineered tendon. Both in vitro and in vivo results have shown that engineered TFBC enhance the biomechanical strength and biological healing using canine model.


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_15 | Pages 69 - 69
1 Nov 2018
Zhu M Thambyah A Tuari D Callon K Tay M Patel D Coleman B Cornish J Musson D
Full Access

Surgical repair of rotator cuff tears have high failure rates (20–70%), often due to a lack of biological healing. Augmenting repairs with extracellular matrix-based scaffolds is a common option for surgeons, although to date, no commercially available product has proven to be effective. In this study, a novel collagen scaffold was assessed for its efficacy in augmenting rotator cuff repair. The collagen scaffold was assessed in vitro for cytocompatability and retention of tenocyte phenotype using alamarBLUE assays, confocal imaging and real-time PCR. Immunogenicity was assessed in vitro by the activation of pre-macrophage cells. In vivo, using a modified rat rotator cuff defect model, supraspinatus tendon repairs were carried out in 46 animals. Overlay augmentation with the collagen scaffold was compared to unaugmented repairs. At 6- and 12-weeks post-op the repairs were tested biomechanically to evaluate repair strength, and histologically for quality of healing. The collagen scaffold supported human tenocyte growth in vitro, with cells appearing morphologically tenocytic and expressing higher tendon gene markers compared to plastic controls. No immunogenic responses were provoked compared to suture material control. In vivo, augmentation with the scaffold improved the histological scores at 12 weeks (8.37/15 vs. 6.43/15, p=0.0317). However, no significant difference was detected on mechanical testing. While the collagen scaffold improved the quality of healing of the tendon, a meaningful increase in biomechanical strength was not achieved. This is likely due to its inability to affect the bone-tendon junction. Future materials/orthobiologics must target both the repaired tendon and the regenerating bone-tendon junction.


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_11 | Pages 358 - 358
1 Jul 2014
Holtby R Razmjou H Gunnis G
Full Access

Summary

In the sample studied, reparability of large and massive tears was associated with pre-op ASES and active external rotation in neutral position. Surgical factors affecting reparability were tear size, tendon mobility and shape of the tear.

Introduction

The limited literature has shown good results with partial repairs of large and massive tears of rotator cuff but the role of factors that affect reparability is less clear1–3. The purpose of this study was twofold, 1) to explore the predictive value of clinical and surgical factors on reparability of large and massive rotator cuff tears and 2) to examine the relationship between reparability and clinical and disability measures.


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_11 | Pages 252 - 252
1 Jul 2014
Mouthuy P Hakimi O Baboldashti NZ Morrey M Lostis E Carr A
Full Access

Summary Statement

This study describes the design and preliminary in vitro testing of a novel patch for the repair of rotator cuff tendon tears. The laminated design incorporates woven and electrospun components. The woven element provides the patch with excellent mechanical strength and the electrospun layer improves cell attachment and promotes cell orientation and diferentiation.

Introduction

Aligned nanofibrous electrospun scaffolds have been previously proposed as ideal scaffolds for tendon repair, replicating the anisotropy of tendon and providing a biomimetic design to encourage tissue regeneration (Hakimi et al., 2012). However, such scaffolds are still limited in terms of mechanical properties. This paper presents the design of a novel patch for rotator cuff repair in which the electrospun scaffold is supported by a woven component.


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_1 | Pages 27 - 27
1 Jan 2017
Chevalier Y Pietschmann M Thorwaechter C Chechik O Adar E Dekel A Mueller P
Full Access

Treatment of massive rotator cuff tears can be challenging. Previous studies with irreparable rotator cuff tears showed good clinical results of tendon healing with the arthroscopic insertion of a protective biodegradable spacer balloon filled with saline solution between the repaired tendon and the acromion [1,2], but so far no scientific evidence has showed how the device alters pressures over the repaired tendon. This biomechanical study investigated the effects of a spacer inserted in the subacromial space on pressures over the repaired rotator cuff tendon in passive motion cycles typical for post-operative rehabilitation routines.

Six human cadaveric shoulders were prepared with the humerus cut 15cm below the joint and embedded in a pot, while the scapula fixed at three points on a plate. A rotator cuff tear was simulated and repaired using a suture anchor and a Mason-Allen suture. The specimens were then mounted on a custom-made pneumatic testing rig to induce passive motion cycles of adduction-abduction (90–0°) and flexion-extension (0–40°) with constant glenohumeral and superior loads and tension is exerted on the supraspinatus tendon with weights. A pressure sensor was placed between the supraspinatus tendon and the acromion. After pressure measurements for 15 cycles of each motion type, the InSpace balloon (OrthoSpace, Inc, Israel) was inserted and the specimens tested and pressure measured again for 15 cycles. Statistically significant changes in peak pressures were then measured before and after balloon.

Peak pressures were measured near 90 degrees abduction. No statistical differences were observed for internal-external rotation before and after balloon-shaped subacromial spacer was inserted. Mean pressures in abduction-adduction were significantly reduced from 121.7 ± 9.5 MPa to 51.5 ± 1.2 MPa. Peak pressures after repair were 1171.3 ± 99.5 MPa and 1749.6 ± 80.7 MPa in flexion-extension and abduction-adduction motion, respectively, and significantly decreased to 468.7 ± 16.0 MPa and 535.1 ± 27.6 MPa after spacer insertion (p<0.0001).

The use of the spacer above the repaired tendon reduced peak pressures and distributed them more widely over the sensor during both abduction-adduction and flexion-extension motions and therefore can reduce the stress on the rotator cuff repair. The InSpace system may reduce the pressure on the repaired tendon, thus potentially protecting the repair. Further studies to investigate this phenomenon are warranted, in particular relating these changes to shoulder kinematics following tear repair and spacer insertion.


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XVIII | Pages 42 - 42
1 May 2012
Chaudhury S Holland C Porter D Vollrath F Carr AJ
Full Access

Background

High re-rupture rates following repairs of rotator cuff tears (RCTs) have resulted in the increased use of repair grafts to act as temporary scaffolds to support tendon healing. It has been estimated that thousands of extracellular matrix repair grafts are used annually to augment surgical repair of rotator cuff tears. The only mechanical assessment of the suitability of these grafts for rotator cuff repair has been made using tensile testing only, and compared grafts to canine infraspinatus. As the shoulder and rotator cuff tendons are exposed to shearing as well as uniaxial loading, we compared the response of repair grafts and human rotator cuff tendons to shearing mechanical stress. We used a novel technique to study material deformation, dynamic shear analysis (DSA).

Methods

The shear properties of four RCT repair grafts were measured (Restore, GraftJacket, Zimmer Collagen Repair and SportsMesh). 3mm-sized biopsy samples were taken and subjected to DSA using oscillatory deformation under compression to calculate the storage modulus (G') as an indicator of mechanical integrity. To assess how well the repair grafts were matched to normal rotator cuff tendons, the storage modulus was calculated for 18 human rotator cuff specimens which were obtained from patients aged between 22 and 89 years (mean age 58.8 years, with 9 males and 9 females). Control human rotator cuff tendons were obtained from the edge of tendons during hemiarthoplasties and stabilisations.

A 1-way ANOVA of all of the groups was performed to compare shear properties between the different commercially available repair grafts and human rotator cuff tendons to see if they were different. Specific comparison between the different repair grafts and normal rotator cuff tendons was done using a Dunn's multiple comparison test.


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_11 | Pages 157 - 157
1 Jul 2014
Heuberer P Lovric V Russell N Goldberg J Walsh W
Full Access

Summary Statement. Demineralised bone matrix augmented tendon-bone fixations in the animal model show less scar tissue and an enthesis morphology closer to the physiologic one which may lead to a more resistant repair construct. Introduction. Rotator cuff repair is one of the most common operative procedures in the shoulder. Yet despite its prevalence recurrent tear rates of up to 94% have been reported in the literature. High failure rates have been associated with tendon detachment from bone at the tendon – bone interface. Exogenous agents as biological strategies to augment tendon – bone healing in the shoulder represent a new area of focus to improve patient outcomes. Demineralised bone matrix (DBM) contains matrix bound proteins, exposed through acid demineralization step of DBM manufacture, and has long been recognised for its osteoinductive and osteoconductive properties. We hypothesised that DBM administered to the bone bed prior to the reattachment of the tendon, will upregulate healing and result in enhanced tissue morphology that more closely resembles that of a normal enthesis. An established ovine transosseous equivalent rotator cuff model was used. Methods. Following ethics approval, 10 adult wethers (18 months) were randomly allocated to control, n=4 (without DBM) or DBM, n=6 (DBM administered to bone bed) groups. The infraspinatus tendon was detached from its insertion and repaired in a transosseous equivalent fashion using PEEK suture anchors. In treatment animals 0.25cc of ovine DBM, previously prepared using a modified Urist protocol, was injected into two drill holes within the bony tendon footprint. Animals were culled at 4 weeks following surgery and processed for tissue histology and microcomputed tomography (μCT) endpoints. Results. No infection or tendon detachment following repair was noted in either group. 3D reconstructed images of μCT scans verified correct DBM and suture anchor placement. Histological images demonstrated distinct differences in tissue morphology between the two groups; however there was no evidence of the four – zoned structure characteristic of a healthy tendon bone insertion, in any specimens. In the control group specimens, the tendon midsubstance was highly disorganised with randomly arranged collagen fibres and diminutive areas of fibrocartilage. In the treatment group, large regions between tendon and bone were occupied by fibrocartilage. Within the fibrocartilage region, insertional collagen fibres appeared organised and chondrocytes were orientated in the direction of the insertional collagen fibres. Organised collagen fibre orientation within the tendon midsubstance was observed, though this was not consistent throughout all the specimens. DBM particles were resorbed and trabecular bone occupied the DBM holes. The PEEK anchors were all in direct contact with the ongrowing bone indicating good quality integration and fixation. Discussion. This study showed that DBM augmented tendon to bone repair leads to an upregulated cellular activity resulting in increased amounts of fibrocartilage between the repaired tendon and underlying bone. The upshot of this is an improved tissue organization which more closely resembles the morphology of the normal enthesis. Introduction of osteoinductive DBM at the tendon – bone interface during surgery may reduce failure rates associated with rotator cuff repair and improve clinical outcomes