Advertisement for orthosearch.org.uk
Results 1 - 20 of 322
Results per page:
Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_13 | Pages 87 - 87
1 Nov 2021
Muriuki MG
Full Access

Some activities of daily living require that the head be kept level during axial rotation of the cervical spine (Kinematically Constrained Axial Rotation). One such activity is looking over one's shoulder when walking or driving. The kinematic constraint of keeping the head level during axial rotation means that the segmental axis of rotation may not be aligned with the global axis of rotation of the cervical spine. Most of the literature on cervical spine axial rotation is based on experiments where the segmental axis of rotation is aligned with the global axis of rotation (Traditional Axial Rotation). There are only a few clinical and biomechanical studies that have examined kinematically constrained cervical axial rotation. We performed a series of biomechanical experiments in which we tested cervical spines in traditional and kinematically constrained axial rotation. The resulting primary and coupled motions of the segments showed that kinematically constrained axial rotation is distinct from traditional axial rotation. Our findings and the findings of other kinematically constrained axial rotation studies will be compared and contrasted with data from traditional axial rotation studies


The Journal of Bone & Joint Surgery British Volume
Vol. 82-B, Issue 8 | Pages 1201 - 1203
1 Nov 2000
Karrholm J Brandsson S Freeman MAR

We studied the knees of 11 volunteers using RSA during a step-up exercise requiring extension while weight-bearing from 50° to 0°. The findings on weight-bearing flexion with and without external rotation of the tibia based on MRI were confirmed


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_8 | Pages 12 - 12
1 Apr 2017
Yasuda T Yokoi Y Oyanagi K Hamamoto K
Full Access

Background. Non-contact anterior cruciate ligament (ACL) injuries occurs with a higher incidence in female athletes compared with males after the onset of puberty. One anatomical factor with clinically observable differences between males and females is lower extremity alignment. The knee joint valgus in the coronal plane, which is associated with ACL injury risk, is composed of rotation of the tibia around the stationary femur and hip rotation combined with knee flexion. The purpose of this study was to prove the difference of hip rotation between female and male handball players with or without history of ACL injury. Methods. Elite collegiate athletes on the varsity handball team (17 females and 24 males) were recruited. Whereas 8 females and 1 male had a history of ACL injury, there were 9 females and 23 males with no history of ACL injury. The 6 measures of hip joint motion [flexion, extension, abduction, adduction, external rotation (ER), and internal rotation (IR)] and the 2 measures of knee joint motion (flexion and extension) were measured with the standard procedure using a goniometer. Results. The range of ER in ACL-injured females (37±7.5) was smaller than in uninjured females (49±8.2). The range of IR in ACL-injured female players (55±9.6) was greater than in uninjured females (41±13). There was no difference in ER+IR between ACL-injured and uninjured females. In the ACL-injured male handball player, ER was dominant to IR. Compared with the uninjured males, the ACL-injured female players showed smaller range of ER, greater ranges of IR and greater ER+IR. Conclusions. ACL-injured female handball players had greater hip IR with smaller hip ER, compared with uninjured counterpart. Hip rotation may be a crucial risk factor for ACL injury in female athletes. Level of evidence. 2b


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_16 | Pages 28 - 28
1 Oct 2016
Holloway N Deakin A Picard F
Full Access

Since the publication by Berger in 1993, many total knee replacements (TKR) have been measured using his technique to assess component rotation. Whereas the femoral landmarks have been showed to be accurate and precise, the use of the tibial tuberosity to ascertain the true tibial orientation is more controversial. The goal of this study was to identify a new anatomical landmark to measure tibial component rotation. 211 CTs performed after TKR were reviewed. The authors noticed that the lateral cortex of the tibia below the tibial plateau component was flat over a depth of approximately 10mm. A protocol to measure tibial rotation in relation to this landmark was developed: the slice below the tibial plateau was identified; a primary line was drawn over the straight lateral cortex of the tibia; a perpendicular to this line defined the reference axis (A); the posterior tibial component axis was drawn (B); the angle between A and B was measured with internal rotation being negative and external positive. Two independent observers measured 31 CTs twice each and Intraclass Correlation Coefficients (ICC) were calculated for intra- and inter-observer error. The 211CTs were measured according to Berger's and this protocol. Intra-observer ICCs were 0.812 for Observer1 and 0.806 for Observer2. The inter-observer ICCs were 0.699 for Reading1 and 0.752 for Reading2. The Berger protocol mean tibial rotation was 9.7°±5.5° (−29.0° to 5.2°) and for the new landmark 0°±5.4° (−18.6° to 14°). This new tibial landmark appeared easy to identify and intra- and inter-observer errors were acceptable. The fact that the mean tibial rotation was 0° makes this landmark attractive. A consistent easily identified landmark for tibial rotation may allow for improvement in component rotation and the diagnosis of dissatisfaction after TKR. Further studies are under way to confirm the relevance of this landmark


The Journal of Bone & Joint Surgery British Volume
Vol. 84-B, Issue 7 | Pages 1070 - 1074
1 Sep 2002
Dumont CE Thalmann R Macy JC

We have assessed the influence of isolated and combined rotational malunion of the radius and ulna on the rotation of the forearm. Osteotomies were made in both the radius and the ulna at the mid-diaphyseal level of five cadaver forearms and stabilised with intramedullary metal implants. Malunion about the axis of the respective forearm bone was produced at intervals of 10°. The ranges of pronation and supination were recorded by a potentiometer under computer control. We examined rotational malunions of 10° to 80° of either the radius or ulna alone and combined rotational malunions of 20° to 60° of both the radius and ulna. Malunion of the ulna in supination had little effect on rotation of the forearm. Malunion of either the radius or of the ulna in pronation gave a moderate reduction of rotation of the forearm. By contrast, malunion of the radius in supination markedly reduced rotation of the forearm, especially with malunion greater than 60°. Combined rotational malunion produced contrasting results. A combination of rotational malunion of the radius and ulna in the same direction had an effect similar to that of an isolated malunion of the radius. A combination in the opposite direction gave the largest limitation of the range of movement. Clinically, rotational malunion may be isolated or part of a complex angular/rotational deformity and rotational malunion may lead to marked impairment of rotation of the forearm. A reproducible method for assessing rotational malunion is therefore needed


The Journal of Bone & Joint Surgery British Volume
Vol. 91-B, Issue 5 | Pages 683 - 690
1 May 2009
Victor J Van Doninck D Labey L Van Glabbeek F Parizel P Bellemans J

The understanding of rotational alignment of the distal femur is essential in total knee replacement to ensure that there is correct placement of the femoral component. Many reference axes have been described, but there is still disagreement about their value and mutual angular relationship. Our aim was to validate a geometrically-defined reference axis against which the surface-derived axes could be compared in the axial plane. A total of 12 cadaver specimens underwent CT after rigid fixation of optical tracking devices to the femur and the tibia. Three-dimensional reconstructions were made to determine the anatomical surface points and geometrical references. The spatial relationships between the femur and tibia in full extension and in 90° of flexion were examined by an optical infrared tracking system. After co-ordinate transformation of the described anatomical points and geometrical references, the projection of the relevant axes in the axial plane of the femur were mathematically achieved. Inter- and intra-observer variability in the three-dimensional CT reconstructions revealed angular errors ranging from 0.16° to 1.15° for all axes except for the trochlear axis which had an interobserver error of 2°. With the knees in full extension, the femoral transverse axis, connecting the centres of the best matching spheres of the femoral condyles, almost coincided with the tibial transverse axis (mean difference −0.8°, . sd. 2.05). At 90° of flexion, this femoral transverse axis was orthogonal to the tibial mechanical axis (mean difference −0.77°, . sd. 4.08). Of all the surface-derived axes, the surgical transepicondylar axis had the closest relationship to the femoral transverse axis after projection on to the axial plane of the femur (mean difference 0.21°, . sd. 1.77). The posterior condylar line was the most consistent axis (range −2.96° to −0.28°, . sd. 0.77) and the trochlear anteroposterior axis the least consistent axis (range −10.62° to +11.67°, . sd. 6.12). The orientation of both the posterior condylar line and the trochlear anteroposterior axis (p = 0.001) showed a trend towards internal rotation with valgus coronal alignment


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XVIII | Pages 69 - 69
1 May 2012
Panchani S Melling D Moorehead J Scott S
Full Access

AIM. When a hip is replaced using a posterior surgical approach, some of the external rotator muscles are divided. The aim of this study was to assess if this surgery has a long term affect on hip rotation during activities of daily living. METHODS. An electromagnetic tracking system was used to assess hip movements during the following activities:-. Activity 1. Picking an object of the floor in a straight leg stance. Activity 2. Picking an object of the floor when knees are flexed. Activity 3. Sitting on a chair. Activity 4. Putting on socks, seated, with the trunk flexed forward. Activity 5. Putting on socks, seated, with the legs crossed. Activity 6. Climbing stairs. Measurements were taken from 10 subjects with bilaterally normal hips, 10 patients with a large head hip replacement, 10 patients with a resurfacing head and 10 patients with a small head hip replacement. All the hip replacement patients were at least 6 months post-op, with an asymptomatic contra-lateral native hip for comparison. Sensors were attached over the iliac crest and the mid-shaft of the lateral thigh. Data was collected as each activity was repeated 3 times. The tracker recorded hip rotation at 10 hertz, with an accuracy of 0.15 degree. RESULTS. For each of the activities the Normal, Large, Resurfacing and Small Head mean external rotations were:-. Activity 1. -2.9,-6.9,9.1,-0.7. Activity 2. -8.1,-6.5,-7.0,2.0. Activity 3. -15.5,-15.6,-11.7,-15.6. Activity 4. 2.2,-10.8,5.3,-3.4. Activity 5. 33.1,24.6,22.5,23.7. Activity 6. -14.6,-11.5,-13.3,-6.5. The only movement that required substantial external rotation was activity 5 (Socks - legs crossed). For this activity the Resurfacing and Small head hips had significantly less rotation than the normal group (P = 0.01 & 0.03, respectively). A t-test comparing the normal group with the large head group had a boarder line significance level of P=0.07. Significant differences were also found for the following comparisons:- Activity 1 -Normal Vs Resurfacing, Activity 4 - Normal Vs Large head and Activity 6 - Normal Vs Small head. Discussion. The results for activity 5 show that patients with a Resurfacing or Small head hip have significantly less external rotation than the normal group


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXXVI | Pages 120 - 120
1 Aug 2012
Holleyman R Gikas P Tyler P Coward P Carrington R Skinner J Briggs T Miles J
Full Access

Background. The position of the hip-joint centre of rotation (HJC) within the pelvis is known to influence functional outcome of total hip replacement (THR). Superior, lateral and posterior relocations of the HJC from anatomical position have been shown to be associated with greater joint reaction forces and a higher incidence of aseptic loosening. In biomechanical models, the maximum force, moment-generating capacity and the range of motion of the major hip muscle groups have been shown to be sensitive to HJC displacement. This clinical study investigated the effect of HJC displacement and acetabular cup inclination angle on functional performance in patients undergoing primary THR. Methods. Retrospective study of primary THR patients at the RNOH. HJC displacement from anatomical position in horizontal and vertical planes was measured relative to radiological landmarks using post-operative, calibrated, anterior-posterior pelvic radiographs. Acetabular cup inclination angle was measured relative to the inter-teardrop line. Maximum range of passive hip flexion, abduction, adduction, external and internal rotation were measured in clinic. Patient reported functional outcome was assessed by Oxford Hip Score (OHS) and WOMAC questionnaires. Data analysed using a linear regression model. Results. 109 THRs were studied in 104 patients (69 Female). Mean age at THR=63 years (22-88). Mean follow-up=17 months (11-39 months). Median OHS=16, WOMAC=8. Increasing vertical HJC displacement (in either superior or inferior direction) from anatomical position was associated with worsening OHS (p<0.05) and WOMAC scores (p<0.05) and a reduced range of passive hip flexion (p<0.05). No relationship was found between either horizontal HJC displacement or acetabular cup inclination angle and patient functional outcome. Conclusion. A significant relationship was identified between increasing vertical displacement of the HJC and worsening patient functional outcome. This supports current opinion regarding the disadvantageous consequences of a superiorly displaced HJC in terms of survivorship and function. We therefore advocate an anatomical restoration of HJC position wherever possible


The Journal of Bone & Joint Surgery British Volume
Vol. 87-B, Issue 7 | Pages 1019 - 1023
1 Jul 2005
Shimogaki K Yasunaga Y Ochi M

Acetabular dysplasia was produced in 24 immature white rabbits. A rotational acetabular osteotomy was then carried out and radiological and histological studies of the articular cartilage were made. In the hips which did not undergo osteotomy, radiographs at 26 weeks showed that residual subluxation remained and arthritic changes such as narrowing of the joint space or dislocation were still seen. However, in the operated group there was a remarkable increase in cover, but arthritic changes were not observed. After 24 weeks, the Mankin grading score in the operated group was significantly lower than that in the non-operated group. The latter hips showed an irregular surface of the cartilage, exfoliation and proliferation of synovial tissue. In those undergoing osteotomy, primary cloning of chondrocytes or hypercellularity was seen and at 24 weeks after operation and metaplasia of the cartilage in the fibrous tissue was observed in the boundary between the medial area of the acetabulum and the acetabular fossa


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_13 | Pages 46 - 46
1 Mar 2013
Theivendran K Thakrar R Holder R Robb C Snow M
Full Access

Introduction. Patellofemoral pain and instability can be quantified by using the tibial tuberosity to trochlea groove (TT-TG) distance with more than or equal to 20mm considered pathological requiring surgical correction. Aim of this study is to determine if knee joint rotation angle is predictive of a pathological TT-TG. Methods. One hundred limbs were imaged from the pelvis to the foot using Computer Tomography (CT) scans in 50 patients with patellofemoral pain and instability. The TT-TG distance, femoral version, tibial torsion and knee joint rotation angle ((KJRA) were measured. Limbs were separated into pathological and non-pathological TT-TG. Significant differences in the measured angles between the pathological and non-pathological groups were estimated using the t test. The inter- and intraobserver variability of the measurement was performed. Logistic regression analysis was used to find the best combination of rotational angle predictors for a pathological TT-TG. Results. The intraclass correlation coefficients for inter- and intraobserver variability of the measured parameters was higher than 0.94 for all measurements. A statistically significant difference (P=0.024) was found between the KJRA between the pathological (mean=10.6, SD=7.79 degrees) and the non-pathological group (mean=6.99, SD=5.06 degrees). Logistic regression analysis showed that both femoral version (P=0.03, OR = 0.95) and KJRA (P=0.004, OR=1.15) were, in combination, significant predictors of an abnormal TT-TG. Tibial torsion was not a significant predictor. Conclusion. The KJRA can be used as an alternative measurement when the TT-TG distance cannot be measured as in cases of severe trochlea dysplasia and may act as a surrogate for pathological TT-TG


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_30 | Pages 29 - 29
1 Aug 2013
Duffy S Deep K Goudie S Freer I Deakin A Payne A
Full Access

This study measured the three bony axes usually used for femoral component rotation in total knee arthroplasty and compared the accuracy and repeatability of different measurement techniques. Fresh cadaveric limbs (n=6) were used. Three observers (student, trainee and consultant) identified the posterior condylar (PCA), anteroposterior (AP) and the transepicondylar (TEA) axes, using a computer navigation system to record measurements. The AP axis was measured before and after being identified with an ink line. The TEA was measured by palpation of the epicondyles both before and after an incision was made in the medial and lateral gutters at the level of the epicondyles, allowing the index finger to be passed behind the gutters. In addition the true TEA was identified after dissection of all the soft tissues. Each measurement was repeated three times. For all axes and each observer the repeatability coefficient was calculated. The identification of the PCA was the most reliable (repeatability coefficient: 1.1°) followed by the AP after drawing the ink line (4.5°) then the AP before (5.7°) and lastly the TEA (12.3°) which showed no improvement with the incisions (13.0°). In general the inter-observer variability for each axis was small (average 3.3°, range 0.4° to 6°), being best for the consultant and worst for the student. In comparison to the true TEA, the recorded TEA and AP axis averaged within 1.5° whilst the PCA was consistently 2.8° or more internally rotated. This study echoed previous studies in demonstrating that palpating the PCA intra-operatively is highly precise but was prone to errors in representing the true TEA if there was asymmetrical condylar erosion. The TEA was highly variable irrespective of observer ability and experience. The line perpendicular line to the AP axis most closely paralleled the true TEA when measured after being identified with an ink line


Summary Statement. Repetitive loading of degenerated human intervertebral discs in combined axial compression, flexion and axial rotation, typical of manual handling lifing activities, causes: an increase in intradiscal maximum shear strains, circumferential annular tears and nuclear seperation from the endplate. Introduction. Chronic low back pain (LBP) is a crippling condition that affects quality of life and is a significant burden to the health care system and the workforce. The mechanisms of LBP are poorly understood, however it is well known that loss of intervertebral disc (disc) height due to degeneration is a common cause of chronic low back and referred pain. Gross disc injury such as herniation can be caused by sudden overload or by damage accumulation via repetitive loading, which is a cause of acute LBP and an accelerant of disc degeneration. The aim of this study was to determine for the first time the relationship between combined repetitive compression, flexion and axial rotation motion of degenerated cadaver lumbar spine segments, and the progression of three-dimensional (3D) internal disc strains that may lead to disc herniation and macroscopic tissue damage. Patients & Methods. Seven degenerated human lumbar functional spinal units (FSUs) underwent pre-test MRI, had a grid of tantalum wires inserted into the mid-transverse plane of the disc and were subjected to 20,000 cycles of repetitive loading in combined compression (1.7 MPa), flexion (11–13°) and right axial rotation (2–3°) in a six degree of freedom hexapod robot. Stereoradiographs were taken at cyclic intervals (1, 500, 1000, 5000, 10000, 15000 and 20000 cycles) from which 3D intradiscal principal strains and maximum shear strains (MSS) were calculated and partitioned into nine disc anatomical regions. After testing the discs underwent post-test MRI followed by macroscopic assessment to identify tissue damage. A repeated measures ANOVA having a within-subjects factor of cycle number, and a between-subjects factor of disc region was used to examine the effects of cycle number and disc region on MSS. Results. No visible evidence of disc herniation occurred after 20,000 cycles, however circumferential annular tears and nucleus separation from the endplate were observed in all specimens in agreement with observed signal changes in post-test MRI images. There was a significant effect of both cycle number, disc region and the interaction of cycle number x disc region on MSS (p<0.001). MSS was significantly larger after 20,000 cycles compared with the first loading cycle in the anterior, left anterolateral, left lateral, and left posterolateral disc regions (p<0.037). Minor changes in MSS were seen in the posterior and nucleus regions. The largest increases were observed in the left anterolateral and left posterolateral regions after 20,000 cycles. Discussion/Conclusion. A significant increase in MSS was observed across most regions in the disc after 20,000 repetitive loading cycles, especially in the left anterolateral and left posterolateral regions. No herniation was observed, although macroscopic and MRI evidence of circumferential annular tears and nuclear separation from the endplate occurred, suggesting internal disc tissue disorganisation that may indicate a progression towards eventual herniation


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_2 | Pages 70 - 70
2 Jan 2024
Peiffer M
Full Access

Acute syndesmotic ankle injuries continue to impose a diagnostic dilemma and it remains unclear whether weighbearing or external rotation should be exerted rotation during the imaging process. Therefore, we aimed to implement both axial load (weightbearing) and external rotation in the assessment of a clinical cohort of patients with syndesmotic ankle injuries syndesmotic using weightbearing CT imaging. In this retrospective comparative cohort study, patients with an acute syndesmotic ankle injury were analyzed using a WBCT (N= 20; Mean age= 31,64 years; SD= 14,07. Inclusion criteria were an MRI confirmed syndesmotic ankle injury imaged by a bilateral WBCT of the ankle during weightbearing and combined weightbearing-external rotation. Exclusion criteria consisted of fracture associated syndesmotic ankle injuries. Three-dimensional (3D) models were generated from the CT slices. Tibiofibular displacement and Talar Rotation was quantified using automated3D measurements (Anterior TibioFibular Distance (ATFD), Alpha Angle, Posterior TibioFibular Distance (PTFD) and Talar Rotation (TR) Angle) in comparison to a cohort of non-injured ankles. Results. The difference in neutral-stressed Alpha° and ATFD showed a significant difference between patients with a syndesmotic ankle lesion and healthy ankles (P = 0.046 and P = 0.039, respectively) The difference in neutral-stressed PTFD and TR° did not show a significant difference between patients with a syndesmotic ankle lesion and healthy ankles (P = 0.492; P = 0.152, respectively). Conclusion. Application of combined weightbearing-external rotation reveals a dynamic anterior tibiofibular widening in patients with syndesmotic ankle injuries. This study provides the first insights based on 3D measurements to support the potential relevance of applying external rotation during WBCT imaging. However, to what extent certain displacement patterns are associated with syndesmotic instability and thus require operative treatment strategies has yet to be determined in future studies


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_2 | Pages 83 - 83
2 Jan 2024
Halloum A Kold S Rölfing J Abood A Rahbek O
Full Access

The aim of this scoping review is to understand the extent and type of evidence in relation to the use of guided growth for correcting rotational deformities of long bones. Guided growth is routinely used to correct angular deformities in long bones in children. It has also been proven to be a viable method to correct rotational deformities, but the concept is not yet fully examined. Databases searched include Medline, Embase, Cochrane Library, Web of Science and Google Scholar. All identified citations were uploaded into Rayyan.ai and screened by at least two reviewers. The search resulted in 3569 hits. 14 studies were included: 1 review, 3 clinical trials and 10 pre-clinical trials. Clinical trials: a total of 21 children (32 femurs and 5 tibiae) were included. Surgical methods were 2 canulated screws connected by cable, PediPlates obliquely oriented, and separated Hinge Plates connected by FiberTape. Rotation was achieved in all but 1 child. Adverse effects reported include limb length discrepancy (LLD), knee stiffness and rebound of rotation after removal of tethers. 2 pre-clinical studies were ex-vivo studies, 1 using 8-plates on Sawbones and 1 using a novel z-shaped plates on human cadaver femurs. There were 5 lapine studies (2 using femoral plates, 2 using tibial plates and 1 using an external device on tibia), 1 ovine (external device on tibia), 1 bovine (screws and cable on metacarp) and a case-report on a dog that had an external device spanning from femur to tibia. Rotation was achieved in all studies. Adverse effects reported include implant extrusions, LLD, articular deformities, joint stiffness and rebound. All included studies conclude that guided growth is a viable treatment for rotational deformities of long bones, but there is great variation in models and surgical methods used, and in reported adverse effects


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_2 | Pages 5 - 5
2 Jan 2024
Huyghe M Peiffer M Cuigniez F Tampere T Ashkani-Esfahani S D'Hooghe P Audenaert E Burssens A
Full Access

One-fourth of all ankle trauma involve injury to the syndesmotic ankle complex, which may lead to syndesmotic instability and/or posttraumatic ankle osteoarthritis in the long term if left untreated. The diagnosis of these injuries still poses a deceitful challenge, as MRI scans lack physiologic weightbearing and plain weightbearing radiographs are subject to beam rotation and lack 3D information. Weightbearing cone-beam CT (WBCT) overcomes these challenges by imaging both ankles during bipedal stance, but ongoingdebate remains whether these should be taken under weightbearing conditions and/or during application of external rotation stress. The aim of this study is study therefore to compare both conditions in the assessment of syndesmotic ankle injuries using WBCT imaging combined with 3D measurement techniques. In this retrospective study, 21 patients with an acute ankle injury were analyzed using a WBCT. Patients with confirmed syndesmotic ligament injury on MRI were included, while fracture associated syndesmotic injuries were excluded. WBCT imaging was performed in weightbearing and combined weightbearing-external rotation. In the latter, the patient was asked to internally rotate the shin until pain (VAS>8/10) or a maximal range of motion was encountered. 3D models were developed from the CT slices, whereafter. The following 3D measurements were calculated using a custom-made Matlab® script; Anterior tibiofibular distance (AFTD), Alpha angle, posterior Tibiofibular distance (PFTD) and Talar rotation (TR) in comparison to the contralateral non-injured ankle. The difference in neutral-stressed Alpha angle and AFTD were significant between patients with a syndesmotic ankle lesion and contralateral control (P=0.046 and P=0.039, respectively). There was no significant difference in neutral-stressed PFTD and TR angle. Combined weightbearing-external rotation during CT scanning revealed an increased AFTD in patients with syndesmotic ligament injuries. Based on this study, application of external rotation during WBCT scans could enhance the diagnostic accuracy of subtle syndesmotic instability


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_8 | Pages 84 - 84
11 Apr 2023
Amirouche F Leonardo Diaz R Koh J Lin C Motisi M Mayo B Tafur J Hutchinson M
Full Access

Postoperative knee stability is critical in determining the success after reconstruction; however, only posterior and anterior stability is assessed. Therefore, this study investigates medial and lateral rotational knee laxity changes after partial and complete PCL tear and after PCL allograft reconstruction. The extending Lachman test assessed knee instability in six fresh-frozen human cadaveric knees. Tibia rotation was measured for the native knee, after partial PCLT (pPCLT), after full PCLT (fPCLT), and then after PCLR tensioned at 30° and 90°. In addition, tests were performed for the medial and lateral sides. The tibia was pulled with 130N using a digital force gauge. A compression load of 50N was applied to the joint on the universal testing machine (MTS Systems) to induce contact. Three-dimensional tibial rotation was measured using a motion capture system (Optotrak). On average, the tibia rotation increased by 33%-42% after partial PCL tear, and by 62%-75% after full PCL tear when compared to the intact case. After PCL reconstruction, the medial tibia rotation decreased by 33% and 37% compared to the fPCL tear in the case that the allograft was tensioned at 30° and 90° of flexion, respectively. Similarly, lateral tibial rotation decreased by 15% and 2% for allograft tensioned at 30° and 90° of flexion respectively, compared to the full tear. Rotational decreases were statistically significant (p<0.005) at the lateral pulling after tensioning the allograft at 90°. PCLR with the graft tensioned at 30° and 90° both reduced medial knee laxity after PCLT. These results suggest that while both tensioning angles restored medial knee stability, tensioning the Achilles graft at 30° of knee flexion was more effective in restoring lateral knee stability throughout the range of motion from full extension to 90° flexion, offering a closer biomechanical resemblance to native knee function


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_8 | Pages 88 - 88
11 Apr 2023
Souleiman F Heilemann M Hennings R Hepp P Gueorguiev B Richards G Osterhoff G Gehweiler D
Full Access

The aim of this study was to investigate the effect of different loading scenarios and foot positions on the configuration of the distal tibiofibular joint (DTFJ). Fourteen paired human cadaveric lower legs were mounted in a loading frame. Computed tomography scans were obtained in unloaded state (75 N) and single-leg loaded stand (700 N) of each specimen in five foot positions: neutral, 15° external rotation, 15° internal rotation, 20° dorsiflexion, and 20° plantarflexion. An automated three-dimensional measurement protocol was used to assess clear space (diastasis), translational angle (rotation), and vertical offset (fibular shortening) in each foot position and loading condition. Foot positions had a significant effect on the configuration of DTFJ. Largest effects were related to clear space increase by 0.46 mm (SD 0.21 mm) in loaded dorsal flexion and translation angle of 2.36° (SD 1.03°) in loaded external rotation, both versus loaded neutral position. Loading had no effect on clear space and vertical offset in any position. Translation angle was significantly influenced under loading by −0.81° (SD 0.69°) in internal rotation only. Foot positioning noticeably influences the measurement when evaluating the configuration of DTFJ. The influence of the weightbearing seems to have no relevant effect on native ankles in neutral position


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_7 | Pages 148 - 148
4 Apr 2023
Jørgensen P Kaptein B Søballe K Jakobsen S Stilling M
Full Access

Dual mobility hip arthroplasty utilizes a freely rotating polyethylene liner to protect against dislocation. As liner motion has not been confirmed in vivo, we investigated the liner kinematics in vivo using dynamic radiostereometry. 16 patients with Anatomical Dual Mobility acetabular components were included. Markers were implanted in the liners using a drill guide. Static RSA recordings and patient reported outcome measures were obtained at post-op and 1-year follow-up. Dynamic RSA recordings were obtained at 1-year follow-up during a passive hip movement: abduction/external rotation, adduction/internal rotation (modified FABER-FADIR), to end-range and at 45° hip flexion. Liner- and neck movements were described as anteversion, inclination and rotation. Liner movement during modified FABER-FADIR was detected in 12 of 16 patients. Median (range) absolute liner movements were: anteversion 10° (5–20), inclination 6° (2–12), and rotation 11° (5–48) relative to the cup. Median absolute changes in the resulting liner/neck angle (small articulation) was 28° (12–46) and liner/cup angle (larger articulation) was 6° (4–21). Static RSA showed changes in median (range) liner anteversion from 7° (-12–23) postoperatively to 10° (-3–16) at 1-year follow-up and inclination from 42 (35–66) postoperatively to 59 (46–80) at 1-year follow-up. Liner/neck contact was associated with high initial liner anteversion (p=0.01). The polyethylene liner moves over time. One year after surgery the liner can move with or without liner/neck contact. The majority of movement is in the smaller articulation between head and liner


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_8 | Pages 76 - 76
11 Apr 2023
Petersen E Rytter S Koppens D Dalsgaard J Bæk Hansen T Larsen NE Andersen M Stilling M
Full Access

In an attempt to alleviate symptoms of the disease, patients with knee osteoarthrosis (KOA) frequently alter their gait patterns. Understanding the underlying pathomechanics and identifying KOA phenotypes is essential for improving treatments. We aimed to investigate altered kinematics in patients with KOA to identify subgroups. Sixty-six patients with symptomatic KOA scheduled for total knee arthroplasty and 12 age-matched healthy volunteers with asymptomatic knees were included. We used k-means to separate the patients based on dynamic radiostereometric assessed knee kinematics. Ligament lesions, KOA score, and clinical outcome were assessed by magnetic resonance imaging, radiographs, and patient reported outcome measures, respectively. We identified four clusters that were supported by clinical characteristics. Compared with the healthy group; The flexion group (n=20): revealed increased flexion, greater adduction, and joint narrowing and consisted primarily of patients with medial KOA. The abduction group (n=17): revealed greater abduction, joint narrowing and included primarily patients with lateral KOA. The anterior draw group (n=10): revealed greater anterior draw, external tibial rotation, lateral tibial shift, adduction, and joint narrowing. This group was composed of patients with medial KOA, some degree of anterior cruciate ligament lesion and the greatest KOA score. The external rotation group (n=19): revealed greater external tibial rotation, lateral tibial shift, adduction, and joint narrowing while no anterior draw was observed. This group included primarily patients with medial collateral and posterior cruciate ligament lesions. Patients with KOA can, based on their gait patterns, be classified into four subgroups, which relate to their clinical characteristics. The findings add to our understanding of associations between disease pathology characteristics in the knee and the pathomechanics in patients with KOA. A next step is to investigate if patients in the pathomechanic clusters have different outcomes following total knee arthroplasty


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_7 | Pages 36 - 36
4 Apr 2023
Pastor T Zderic I van Knegsel K Link B Beeres F Migliorini F Babst R Nebelung S Ganse B Schöneberg C Gueorguiev B Knobe M
Full Access

Proximal humeral shaft fractures are commonly treated with long straight locking plates endangering the radial nerve distally. The aim of this study was to investigate the biomechanical competence in a human cadaveric bone model of 90°-helical PHILOS plates versus conventional straight PHILOS plates in proximal third comminuted humeral shaft fractures. Eight pairs of humeral cadaveric humeri were instrumented using either a long 90°-helical plate (group1) or a straight long PHILOS plate (group2). An unstable proximal humeral shaft fracture was simulated by means of an osteotomy maintaining a gap of 5cm. All specimens were tested under quasi-static loading in axial compression, internal and external rotation as well as bending in 4 directions. Subsequently, progressively increasing internal rotational loading until failure was applied and interfragmentary movements were monitored by means of optical motion tracking. Flexion/extension deformation (°) in group1 was (2.00±1.77) and (0.88±1.12) in group2, p=0.003. Varus/valgus deformation (°) was (6.14±1.58) in group1 and (6.16±0.73) in group2, p=0.976. Shear (mm) and displacement (°) under torsional load were (1.40±0.63 and 8.96±0.46) in group1 and (1.12±0.61 and 9.02±0.48) in group2, p≥0.390. However, during cyclic testing shear and torsional displacements and torsion were both significantly higher in group 1, p≤0.038. Cycles to catastrophic failure were (9960±1967) in group1 and (9234±1566) in group2, p=0.24. Although 90°-helical plating was associated with improved resistance against varus/valgus deformation, it demonstrated lower resistance to flexion/extension and internal rotation as well as higher flexion/extension, torsional and shear movements compared to straight plates. From a biomechanical perspective, 90°-helical plates performed inferior compared to straight plates and alternative helical plate designs with lower twist should be investigated in future paired cadaveric studies