As the demand for primary total knee arthroplasty (TKA) has been on the rise, so will be the demand for revision knee surgery. Nevertheless, our knowledge on the modes of failure and factors associated with failure of knee revision surgery is considerably lower to that known for primary TKA. To date, this has been mostly based on case series within the literature. Therefore, the aim of this study was to evaluate the survivorship of revision TKA and determine the reasons of failure. A retrospective study was conducted with prior approval of the institutional audit department. This involved evaluation of existing clinical records and radiographs of patients who underwent revision knee surgery at our institution between 2003 and 2015. Re-revision was identified as the third or further procedure on the knee in which at least one prosthetic component was inserted or changed.Introduction
Methods
In severe cases of total knee & hip arthroplasty, where off-the-shelf implants are not suitable (i.e., in cases with extended bone defects or periprosthetic fractures), 3D-printed custom-made knee & hip revision implants out of titanium or cobalt-chromium alloy represent one of the few remaining clinical treatment options. Design verification and validation of such custom-made implants is very challenging. Therefore, a methodology was developed to support surgeons and engineers in their decision on whether a developed design is suitable for the specific case. A novel method for the pre-clinical testing of 3D-printed custom-made knee implants has been established, which relies on the biomechanical test and finite element analysis (FEA) of a comparable clinically established reference implant. The method comprises different steps, such as identification of the main potential failure mechanism, reproduction of the biomechanical test of the reference implant via FEA, identification of the maximum value of the corresponding FEA quantity of interest at the required load level, definition of this value as the acceptance criterion for the FEA of the custom-made implant, reproduction of the biomechanical test with the custom-made implant via FEA, decision making for realization or re-design based on the acceptance criterion is fulfilled or not. Exemplary cases of custom-made knee & hip implants were evaluated with this new methodology. The FEA acceptance criterion derived from the reference implants was fulfilled in both custom-made implants and subsequent biomechanical tests verified the FEA results. The suggested method allows a quantitative evaluation of the biomechanical properties of custom-made knee & hip implant without performing physical bench testing. This represents an important contribution to achieve a sustainable patient treatment in complex
Hip and knee arthroplasties are very common operations in the UK with over 70000 hip and over 80000 knee arthroplasties taking place in England and Wales in 2011. Fortunately mortality following these operations is rare. However it remains important to understand the incidence and causes of death, in order to manage risk where possible and to inform the consent process. This study aimed to evaluate the incidence and causes of death within 30 days after undergoing hip or knee arthroplasty in our unit and to highlight possible risk factors. We looked at 30 day mortality in all patients undergoing hip or knee arthroplasty in our institution between 2005 and 2011. Data on post-operative deaths was derived from the Scottish Arthroplasty Project and correlated with procedural and demographic data from our hospital Patient Administration System (PAS). The notes of all patients who had died within a period of 30 days post-operatively were reviewed to collect data on co-morbid conditions, pre-operative investigations, post-operative thromboprophylaxis and cause of death. All primary and
Prosthetic joint infection (PJI) is an uncommon but serious complication of hip and knee replacement. We investigated the rates of revision surgery for the treatment of PJI following primary and revision hip and knee replacement, explored time trends, and estimated the overall surgical burden created by PJI. We analysed the National Joint Registry for England and Wales for revision hip and knee replacements performed for a diagnosis of PJI and their index procedures from 2003–2014. The index hip replacements consisted of 623,253 primary and 63,222 aseptic revision hip replacements with 7,642 revisions subsequently performed for PJI; for knee replacements the figures were 679,010 primary and 33,920 aseptic revision knee replacements with 8,031 revisions subsequently performed for PJI. Cumulative incidence functions, prevalence rates and the burden of PJI in terms of total procedures performed as a result of PJI were calculated. Revision rates for PJI equated to 43 out of every 10,000 primary hip replacements (2,705/623,253), i.e. 0.43%(95%CI 0.42–0.45), subsequently being revised due to PJI. Around 158 out of every 10,000 aseptic revision hip replacements performed were subsequently revised for PJI (997/63,222), i.e. 1.58%(1.48–1.67). For knees, the respective rates were 0.54%(0.52–0.56) for primary replacements, i.e. 54 out of every 10,000 primary replacements performed (3,659/679,010) and 2.11%(1.96–2.23) for aseptic revision replacements, i.e. 211 out of every 10,000 aseptic revision replacements performed (717/33,920). Between 2005 and 2013, the risk of revision for PJI in the 3 months following primary hip replacement rose by 2.29 fold (1.28–4.08) and after aseptic revision by 3.00 fold (1.06–8.51); for knees, it rose by 2.46 fold (1.15–5.25) after primary replacement and 7.47 fold (1.00–56.12) after aseptic revision. The rates of revision for PJI performed at any time beyond 3 months from the index surgery remained stable or decreased over time. From a patient perspective, after accounting for the competing risk of revision for an aseptic indication and death, the 10-year cumulative incidence of revision hip replacement for PJI was 0.62%(95%CI 0.59–0.65) following primary and 2.25%(2.08–2.43) following aseptic
Osteoporosis and abnormal bone metabolism may prove to be significant
factors influencing the outcome of arthroplasty surgery, predisposing
to complications of aseptic loosening and peri-prosthetic fracture.
We aimed to investigate baseline bone mineral density (BMD) and
bone turnover in patients about to undergo arthroplasty of the hip
and knee. We prospectively measured bone mineral density of the hip and
lumbar spine using dual-energy X-ray absorptiometry (DEXA) scans
in a cohort of 194 patients awaiting hip or knee arthroplasty. We
also assessed bone turnover using urinary deoxypyridinoline (DPD),
a type I collagen crosslink, normalised to creatinine.Aims
Methods