Advertisement for orthosearch.org.uk
Results 1 - 15 of 15
Results per page:
Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_16 | Pages 50 - 50
1 Dec 2021
Mehta S Mahajan U Sathyamoorthy P
Full Access

Abstract. Background. The influence of diagnosis on outcomes after reverse shoulder arthroplasty (RSA) is not completely understood. The purpose of this study was to compare clinical outcomes of different pathologies. Methods. A total of 78 RSAs were performed for the following diagnoses: (1) rotator cuff tear arthropathy(RCA), (2) massive cuff tear(MCT) with osteoarthritis(OA), (3) MCT without OA, (4) arthritis, (5) acute proximal humerus fracture. Mean follow up 36 months (upto 5 years) Range of motion, Oxford Shoulder Score were obtained preoperatively and postoperatively. Results. Mean OSS was 30. The RCA, MCT-with-OA, MCT-without-OA, and arthritis groups all exhibited significant improvements in all outcome scores and in all planes of motion. After adjustment for age and compared with RCA, those with OA had significantly better abduction (P < .05), and those with fractures had significantly worse patient satisfaction (P < .05). Among male patients, those with MCTs without OA had significantly worse satisfaction (P < .05). Conclusion. RSA reliably provides improvement regardless of preoperative diagnosis. Although subtle differences exist between male and female patients, improvements in clinical outcome scores were apparent after RSA


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_31 | Pages 14 - 14
1 Aug 2013
Drury C Elias-Jones C Tait G
Full Access

Arthritis of the glenohumeral joint accompanied by an irreparable tear of the rotator cuff can cause severe pain, disability and loss of function, particularly in the elderly population. Anatomical shoulder arthroplasty requires a functioning rotator cuff, however, reverse shoulder arthroplasty is capable of addressing both rotator cuff disorders and glenohumeral deficiencies. The Aequalis Reversed Shoulder Prosthesis design is based on two bio-mechanical principles by Grammont; a medialized center of rotation located inside the glenoid bone surface and second, a 155 degree angle of inclination. Combined, they increase the deltoid lever arm by distalizing the humerus and make the prosthesis inherently stable. 24 consecutive primary reverse total shoulder arthroplasties were performed by a single surgeon for arthritis with rotator cuff compromise and 1 as a revision for a failed primary total shoulder replacement between December 2009 and October 2012. Patients were assessed postoperatively with the use of the DASH score, Oxford shoulder score, range of shoulder motion and plain radiography with Sirveaux score for scapular notching. Mean age at the time of surgery was 72.5 years (range 59 to 86). Average follow up time was 19.4 months (range 4 to 38). Functional outcome scores from our series were comparable with patients from other follow up studies of similar prosthesis design. All patients showed improvement in range of shoulder movement postoperatively. Complications included one dislocation, one acromion fracture and one humeral shaft fracture. No cases of deep infection were recorded. Overall, the short-term clinical results were promising for this series of patients and indicate reverse shoulder arthroplasty as an appropriate treatment for this group of patients


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_13 | Pages 18 - 18
1 Nov 2021
Troiano E Facchini A Meglio MD Peri G Aiuto P Mondanelli N Giannotti S
Full Access

Introduction and Objective. In recent years, along with the extending longevity of patients and the increase in their functional demands, the number of annually performed RSA and the incidence of complications are also increasing. When a complication occurs, the patient often needs multiple surgeries to restore the function of the upper limb. Revision implants are directly responsible for the critical reduction of the bone stock, especially in the shoulder. The purpose of this paper is to report the use of allograft bone to restore the bone stock of the glenoid in the treatment of an aseptic glenoid component loosening after a reverse shoulder arthroplasty (RSA). Materials and Methods. An 86-years-old man came to our attention for aseptic glenoid component loosening after RSA. Plain radiographs showed a complete dislocation of the glenoid component with 2 broken screws in the neck of glenoid. CT scans confirmed the severe reduction of the glenoid bone stock and critical bone resorption and were used for the preoperative planning. To our opinion, given the critical bone defect, the only viable option was revision surgery with restoration of bone stock. We planned to use a bone graft harvested from distal bone bank femur as component augmentation. During the revision procedure the baseplate with a long central peg was implanted “on table” on the allograft and an appropriate osteotomy was made to customize the allograft on the glenoid defect according to the CT-based preoperative planning. The Bio-component was implanted with stable screws fixation on residual scapula. We decided not to replace the humeral component since it was stable and showed no signs of mobilization. Results. The new bio-implant was stable, and the patient gained a complete functional recovery of the shoulder. The scheduled radiological assessments up to 12 months showed no signs of bone resorption or mobilization of the glenoid component. Conclusions. The use of bone allograft in revision surgery after a RSA is a versatile and effective technique to treat severe glenoid bone loss and to improve the global stability of the implant. Furthermore, it represents a viable alternative to autologous graft since it requires shorter operative times and reduces graft site complications. There are very few data available regarding the use of allografts and, although the first studies are encouraging, further investigation is needed to determine the biological capabilities of the transplant and its validity in complex revisions after RSA


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_2 | Pages 24 - 24
2 Jan 2024
Nolan L Mahon J Mirdad R Alnajjar R Galbraith A Kaar K
Full Access

Total shoulder arthroplasty (TSA) and Reverse Total shoulder arthroplasty (RSA) are two of the most performed shoulder operations today. Traditionally postoperative rehabilitation included a period of immobilisation, protecting the joint and allowing time for soft tissue healing. This immobilisation period may significantly impact a patient's quality of life (Qol)and ability to perform activities of daily living (ADL's). This period of immobilisation could be safely avoided, accelerating return to function and improving postoperative QoL.

This systematic review examines the safety of early mobilisation compared to immobilisation after shoulder arthroplasty focusing on outcomes at one year.

Methods

A systematic review was performed as per the PRISMA guidelines. Results on functional outcome and shoulder range of motion were retrieved.

Six studies were eligible for inclusion, resulting in 719 patients, with arthroplasty performed on 762 shoulders, with information on mobilisation protocols on 736 shoulders (96.6%) and 717 patients (99.7%). The patient cohort comprised 250 males (34.9%) and 467 females (65.1%). Of the patients that successfully completed follow-up, 81.5% underwent RSA (n = 600), and 18.4% underwent TSA (n = 136). Overall, 262 (35.6%) patients underwent early postoperative mobilisation, and 474 shoulders were (64.4%) immobilised for a length of time. Immobilised patients were divided into three subgroups based on the period of immobilisation: three, four, or six weeks. There were 201 shoulders (27.3%) immobilised for three weeks, 77 (10.5%) for four weeks and 196 (26.6%) for six weeks. Five of the six manuscripts found no difference between clinical outcomes at one year when comparing early active motion versus immobilisation after RSA or TSA.

Early mobilisation is a safe postoperative rehabilitation pathway following both TSA and RSA. This may lead to an accelerated return to function and improved quality of life in the postoperative period.


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_13 | Pages 119 - 119
1 Nov 2021
Facchini A Troiano E Saviori M Meglio MD Ghezzi R Mondanelli N Giannotti S
Full Access

Introduction and Objective

The aim of this study was to evaluate whether CT-based pre-operative planning, integrated with intra-operative navigation could improve glenoid baseplate fixation and positioning by increasing screw length, reducing number of screws required to obtain fixation and increasing the use of augmented baseplate to gain the desired positioning. Reverse total shoulder arthroplasty (RSA) successfully restores shoulder function in different conditions. Glenoid baseplate fixation and positioning seem to be the most important factors influencing RSA survival. When scapular anatomy is distorted (primitive or secondary), optimal baseplate positioning and secure screw purchase can be challenging.

Materials and Methods

Twenty patients who underwent navigated RSA (oct 2018 and feb 2019) were compared retrospectively with twenty patients operated on with a conventional technique. All the procedures were performed by the same surgeon, using the same implant in cases of eccentric osteoarthritis or complete cuff tear. Exclusion criteria were: other diagnosis as proximal humeral fractures, post-traumatic OA previously treated operatively with hardware retention, revision shoulder arthroplasty.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_8 | Pages 96 - 96
11 Apr 2023
Crippa Orlandi N De Sensi A Cacioppo M Saviori M Giacchè T Cazzola A Mondanelli N Giannotti S
Full Access

The computational modelling and 3D technology are finding more and more applications in the medical field. Orthopedic surgery is one of the specialties that can benefit the most from this solution. Three case reports drawn from the experience of the authors’ Orthopedic Clinic are illustraded to highlight the benefits of applying this technology. Drawing on the extensive experience gained within the authors’ Operating Unit, three cases regarding different body segments have been selected to prove the importance of 3D technology in preoperative planning and during the surgery. A sternal transplant by allograft from a cryopreserved cadaver, the realization of a custom made implant of the glenoid component in a two-stage revision of a reverse shoulder arthroplasty, and a case of revision on a hip prosthesis with acetabular bone loss (Paprosky 3B) treated with custom system. In all cases the surgery was planned using 3D processing software and models of the affected bone segments, printed by 3D printer, and based on CT scans of the patients. The surgical implant was managed with dedicated instruments. The use of 3D technology can improve the results of orthopedic surgery in many ways: by optimizing the outcomes of the operation as it allows a preliminary study of the bone loss and an evalutation of feasibility of the surgery, it improves the precision of the positioning of the implant, especially in the context of severe deformity and bone loss, and it reduces the operating time; by improving surgeon training; by increasing patient involvement in decision making and informed consent. 3D technology, by offering targeted and customized solutions, is a valid tool to obtain the tailored care that every patient needs and deserves, also providing the surgeon with an important help in cases of great complexity


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_2 | Pages 23 - 23
2 Jan 2024
Dragonas C Waseem S Simpson A Leivadiotou D
Full Access

The advent of modular implants aims to minimise morbidity associated with revision of hemiarthroplasty or total shoulder arthroplasty (TSA) to reverse shoulder arthroplasty (RSR) by allowing retention of the humeral stem. This systematic review aimed to summarise outcomes following its use and reasons why modular humeral stems may be revised. A systematic review of Pubmed, Medline and EMBASE was performed according to PRISMA guidelines of all patients undergoing revision of a modular hemiarthroplasty or TSA to RSR. Primary implants, glenoid revisions, surgical technique and opinion based reports were excluded. Collected data included demographics, outcomes and incidence of complications. 277 patients were included, with a mean age of 69.8 years (44-91) and 119 being female. Revisions were performed an average of 30 months (6-147) after the index procedure, with the most common reason for revision being cuff failure in 57 patients. 165 patients underwent modular conversion and 112 underwent stem revision. Of those that underwent humeral stem revision, 18 had the stem too proximal, in 15 the stem was loose, 10 was due to infection and 1 stem had significant retroversion. After a mean follow up of 37.6 months (12-91), the Constant score improved from a mean of 21.8 to 48.7. Stem revision was associated with a higher complication rate (OR 3.13, 95% CI 1.82-5.39). The increased use of modular stems has reduced stem revision, however 40% of these implants still require revision due to intra-operative findings. Further large volume comparative studies between revised and maintained humeral stems post revision of modular implants can adequately inform implant innovation to further improve the stem revision rate


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_16 | Pages 72 - 72
1 Dec 2021
Komperla S Giles W Flatt E Gandhi MJ Eyre-Brook AE Jones V Papanna M Eves T Thyagarajan D
Full Access

Abstract. Shoulder replacements have evolved and current 4th generation implants allow intraoperative flexibility to perform anatomic, reverse, trauma, and revision shoulder arthroplasty. Despite high success rates with shoulder arthroplasty, complication rates high as 10–15% have been reported and progressive glenoid loosening remains a concern. Objectives. To report medium term outcomes following 4th generation VAIOS® shoulder replacement. Methods. We retrospectively analysed prospectively collected data following VAIOS® shoulder arthroplasty performed by the senior author between 2014–2020. This included anatomical (TSR), reverse(rTSR), revision and trauma shoulder replacements. The primary outcome was implant survival (Kaplan-Meier analysis). Secondary outcomes were Oxford Shoulder Scores (OSS), radiological outcomes and complications. Results. 172 patients met our inclusion criteria with 114 rTSR, 38 anatomical TSR, and 20 hemiarthroplasty. Reverse TSR- 55 primary, 31 revision, 28 for trauma. Primary rTSR- 0 revisions, average 3.35-year follow-up. Revision rTSR-1 revision (4.17%), average 3.52-year follow-up. Trauma rTSR- 1 revision (3.57%), average 4.56-year follow-up OSS: Average OSS improved from 15.39 to 33.8 (Primary rTSR) and from 15.11 to 29.1 (Revision rTSR). Trauma rTSR-Average post-operative OSS was 31.4 Anatomical TSR38 patients underwent primary anatomical TSR, 8 were revisions following hemiarthroplasty. In 16/38 patients, glenoid bone loss was addressed by bone grafting before implantation of the metal back glenoid component. Mean age at time of surgery was 68.3 years (53 – 81 years). Mean follow-up was 34 months (12 – 62 months). The average Oxford shoulder score improved from 14 (7–30) to 30 (9–48). There were 3 revisions (7.8%); two following subscapularis failure requiring revision conversion to reverse shoulder replacement and one for glenoid graft failure. Conclusions. The medium-term results of the VAIOS® system suggest much lower revision rates across multiple configurations of the system than previously reported, as well as a low incidence of scapular notching. This system allows conversion to rTSR during primary and revision surgery


Bone & Joint 360
Vol. 13, Issue 4 | Pages 43 - 45
2 Aug 2024
Evans JT Evans JP Whitehouse MR


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_11 | Pages 354 - 354
1 Jul 2014
Eraly K Stoffelen D Van Geel N Demol J Debeer P
Full Access

Summary Statement. In this study, excellent positioning of custom-made glenoid components was achieved using patient-specific guides. Achieving the preoperatively planned orientation of the component improved significantly and more screws were located inside the scapular bone compared to implantations without such guide. Introduction. Today's techniques for total or reverse shoulder arthroplasty are limited when dealing with severe glenoid defects. The available procedures, for instance the use of bone allografts in combination with available standard implants, are technically difficult and tend to give uncertain outcomes (Hill et al. 2001; Elhassan et al. 2008; Sears et al. 2012). A durable fixation between bone and implant with optimal fit and implant positioning needs to be achieved. Custom-made defect-filling glenoid components are a new treatment option for severe glenoid defects. Despite that the patient-specific implants are uniquely designed to fit the patient's bone, it can be difficult to achieve the preoperatively planned position of the component, resulting in less optimal screw fixation. We hypothesised that the use of a patient-specific guide would improve implant and screw positioning. The aim of this study was to evaluate the added value of a newly developed patient-specific guide for implant and screw positioning, by comparing glenoid implantations with and without such guide. Patients & Methods. Large glenoid defects, representative for the defects encountered in clinical practice, were created in ten cadaveric shoulders. A CT scan of each cadaver was taken to evaluate the defects and to generate three-dimensional models of the scapular bones. Based on these models, custom glenoid components were designed. Furthermore, a newly developed custom guide was designed for five randomly selected shoulders. New CT scans were taken after implantation to generate 3D models of the bone and the implanted component and screws. This enabled to compare the experimentally achieved and preoperatively planned reconstruction. The location and orientation of the glenoid component and screw positioning were determined and differences with the optimal preoperative planning were calculated. Results. An excellent component positioning (difference in location: 1.4±0, 7mm; difference in orientation: 2, 5±1, 2°) was achieved when using the guide compared to implantations without guidance (respectively 1, 7±0, 5mm; 5, 1±2, 3°). The guide improved component orientation significantly (P<0.1). After using the guide, all screws were positioned inside the scapular bone whereas 25% of the screws placed without guidance were positioned outside the scapular bone. Discussion/Conclusion. In this study, excellent positioning of custom-made glenoid components was achieved using patient-specific guides. Achieving the preoperatively planned orientation of the component improved significantly and more screws were located inside the scapular bone compared to implantations without such guide


Bone & Joint 360
Vol. 9, Issue 5 | Pages 49 - 50
1 Oct 2020
Das MA


Bone & Joint 360
Vol. 9, Issue 1 | Pages 10 - 14
1 Feb 2020
Ibrahim M Reito A Pidgaiska O


Bone & Joint 360
Vol. 9, Issue 2 | Pages 46 - 48
1 Apr 2020
Evans JT Whitehouse MR


Bone & Joint Research
Vol. 6, Issue 10 | Pages 590 - 599
1 Oct 2017
Jefferson L Brealey S Handoll H Keding A Kottam L Sbizzera I Rangan A

Objectives

To explore whether orthopaedic surgeons have adopted the Proximal Fracture of the Humerus: Evaluation by Randomisation (PROFHER) trial results routinely into clinical practice.

Methods

A questionnaire was piloted with six orthopaedic surgeons using a ‘think aloud’ process. The final questionnaire contained 29 items and was distributed online to surgeon members of the British Orthopaedic Association and British Elbow and Shoulder Society. Descriptive statistics summarised the sample characteristics and fracture treatment of respondents overall, and grouped them by whether they changed practice based on PROFHER trial findings. Free-text responses were analysed qualitatively for emerging themes using Framework Analysis principles.


Bone & Joint 360
Vol. 2, Issue 6 | Pages 37 - 37
1 Dec 2013
Phillips JRA Petrie MJ