Summary Statement.
Wear of polyethylene is associated with aseptic loosening of orthopaedic implants and has been observed in hip and knee prostheses and anatomical implants for the
Wear of polymeric glenoid components has been identified as a cause of loosening and failure of shoulder implants1,2 in vivo. A small number of shoulder joint simulators have been built for in vitro wear testing, however none have been capable of testing with physiological motion patterns in three axes and with physiological loading. The Newcastle Shoulder Wear Simulator was designed with three axes of motion, which are programmable so that different activities of daily living might be replicated. The simulator uses three pneumatic cylinders with integral position encoders to move five shoulder prostheses simultaneously in the flexion-extension, abduction-adduction, and internal-external rotation axes. Axial loading is applied with pneumatic cylinders supplied from a pneumatic proportional valve via a manifold, which also supplies a sixth static control station. In order to establish if that the machine can actually perform as intended, commissioning trials were conducted replicating lifting a 0.5 Kg weight to head height as a daily living activity. During the commissioning trials JRI Orthopaedics
To explore whether orthopaedic surgeons have adopted the Proximal Fracture of the Humerus: Evaluation by Randomisation (PROFHER) trial results routinely into clinical practice. A questionnaire was piloted with six orthopaedic surgeons using a ‘think aloud’ process. The final questionnaire contained 29 items and was distributed online to surgeon members of the British Orthopaedic Association and British Elbow and Shoulder Society. Descriptive statistics summarised the sample characteristics and fracture treatment of respondents overall, and grouped them by whether they changed practice based on PROFHER trial findings. Free-text responses were analysed qualitatively for emerging themes using Framework Analysis principles.Objectives
Methods