Despite worldwide clinical use of bio-absorbable devices for internal fixation in orthopaedic surgery, the degradation behaviour and tissue replacement of these implants are not fully understood. In a long-term experimental study, we have determined the patterns of tissue
Ligament integrity is directly associated with ankle stability. Nearly 40% of ankle sprains result in chronic ankle instability, affecting biomechanics and potentially causing osteoarthritis. Ligament replacement could restore stability and avoid this degenerative pathway, but a greater understanding of ankle ligament behaviour is required. Additionally, autograft or allograft use is limited by donor-site morbidity and inflammatory responses respectively. Decellularised porcine grafts could address this, by removing cellular material to prevent acute immune responses, while preserving mechanical properties. This project will characterise commonly injured ankle ligaments and damage mechanisms, identify ligament reconstruction requirements, and investigate the potential of decellularised porcine grafts as a replacement material. Several porcine tendons were evaluated to identify suitable candidates for decellularisation. The viscoelastic properties of native tissues were assessed using dynamic mechanical analysis (DMA), followed by ramp to ‘sub-rupture’ at 1% strain/s, and further DMA. Multiple samples (n=5) were taken along the graft to assess variation along the tendon. When identifying suitable porcine tendons, a lack of literature on human ankle ligaments was identified. Inconsistencies in measurement methods and properties reported makes comparison between studies difficult. Preliminary testing on porcine tendons suggested there is little variation in viscoelastic properties along the length of tendon. Testing also suggested strain rates of 1%/s sub-rupture was not large enough to affect viscoelastic properties (no changes in storage or loss moduli or tanẟ). Further testing is underway to improve upon low initial sample numbers and confirm these results, with varying strain rates to identify suitable sub-rupture sprain conditions. This work highlights need for new data on human ankle ligaments to address knowledge gaps and identify suitable replacement materials. Future work will generate this data and decellularise porcine tendons of similar dimensions. Collagen damage will be investigated using histology and lightsheet microscopy, and viscoelastic changes through DMA.
The aim of this study was to report the restauration of the normal vertebral morphology and the absence of curve progression after removal the instrumentation in AIS patients that underwent posterior correction of the deformity by common all screws construct whitout fusion. A series of 36 AIS immature patients (Risser 3 or less) were include in the study. Instrumentation was removed once the maturity stage was complete (Risser 5). Curve correction was assessed at pre and postoperative, before instrumentation removal, just post removal, and more than two years after instrumentation removal. Epiphyseal vertebral growth modulation was assessed by a coronal wedging ratio (WR) at the apical level of the main curve (MC). The mean preoperative coronal Cobb was corrected from 53.7°±7.5 to 5.5º±7.5º (89.7%) at the immediate postop. After implants removal (31.0±5.8 months) the MC was 13.1º. T5–T12 kyphosis showed a significant improvement from 19.0º before curve correction to 27.1º after implants removal (p<0.05). Before surgery, WR was 0.71±0.06, and after removal WR was 0.98±0.08 (p<0.001). At the end of follow-up, the mean sagittal range of motion (ROM) of the T12-S1 segment was 51.2±21.0º. SRS-22 scores improved from 3.31±0.25 preoperatively to 3.68±0.25 at final assessment (p<0.001). In conclusion, fusionless posterior approach using a common all pedicle screws construct correct satisfactory scoliotic main curves and permits removal of the instrumentation once the bone maturity is reached. The final correction was highly satisfactory and an acceptable ROM of the previously lower instrumented segments was observed.
Statement of Purposes. Functional
Ovine articular chondrocytes were isolated from cartilage biopsy and culture expanded All defects were assessed using the International Cartilage Repair Society (ICRS) classification. Those treated with ACFC, ACI and AF exhibited median scores which correspond to a nearly-normal appearance. On the basis of the modified O’Driscoll histological scoring scale, ACFC implantation significantly enhanced cartilage repair compared to ACI and AF. Using scanning electron microscopy, ACFC and ACI showed characteristic organisation of chondrocytes and matrices, which were relatively similar to the surrounding adjacent cartilage. Implantation of ACFC resulted in superior hyaline-like cartilage regeneration when compared with ACI. If this result is applicable to humans, a better outcome would be obtained than by using conventional ACI.
Introduction and Objective. A proper
Range of Motion (ROM) assessments are routinely used during joint replacement to evaluate joint stability before, during and after surgery to ensure the effective
Lesions in the joint surface are commonly treated with osteoarticular autograft transfer system (OATS), autologous cell implantation (ACI/MACI), or microfracture. Tissue formed buy the latter commonly results in mechanically inferior fibrocartilage that fails to integrate with the surrounding native cartilage, rather than durable hyaline cartilage. Fractional laser treatment to make sub-millimeter (<500 µm) channels has been employed for tissue regeneration in the skin to facilitate rejuvenation without typical scarring. Additionally, we have pioneered a means to generate articular cartilage matrix from chondrocytes—dynamic Self-Regenerating Cartilage (dSRC). Combining these two approaches by performing fractional laser treatment of the joint cartilage and treating with dSRC is a new paradigm for joint surface
Occlusal loading and muscle forces during mastication aids in assessment of dental
Orthopaedic soft tissues, such as tendons, ligaments, and articular cartilage, rely on their unique collagen fiber architectures for proper functionality. When these structures are disrupted in disease or fail to regenerate in engineered tissues, the tissues transform into dysfunctional fibrous tissues. Unfortunately, collagen synthesis in regenerating tissues is often slow, and in some cases, collagen fibers do not regenerate naturally after injury, limiting repair options. One of the research focuses of my team is to develop functional fiber replacements that can promote in vivo repair of musculoskeletal tissues throughout the body. In this presentation, I will discuss our recent advancements in electrowriting 3D printing of natural polymers for creating functional fiber replacements. This manufacturing process utilizes electrical signals to control the flow of polymeric materials through an extrusion nozzle, enabling precise deposition of polymeric fibers with sizes that cannot be achieved using conventional extrusion printing methods. Furthermore, it allows for the formation of fiber organizations that surpass the capabilities of conventional electrospinning processes. During the presentation, I will showcase examples of electrowritten microfiber scaffolds using various naturally-derived polymers, such as gelatin (a denatured form of collagen) and silk fibroin. I will discuss the functional properties of silk-based scaffolds and highlight how they exhibit restored β-sheet and α-helix structures [1]. This
Reports of improved functional outcome of Metal on Metal Hip Resurfacing Arthroplasty (mHRA) to Total Hip Replacement needs to be balanced with concerns of metal ion release. By removing cobalt-chrome, cHRA reduces these risks. To the author's knowledge, there is no data available on functional outcomes of cHRA, therefore the aim of the study was to compare the function between cHRA patients and mHRA patients. 24 patients received a unilateral cHRA (H1, Embody) and was compared to 24 age and gender matched patients with a unilateral mHRA (BHR, Smith and Nephew). All patients completed the Oxford Hip Score (OHS)[T2] and underwent gait analysis on an instrumented treadmill before and at a mean of 74wks (+/− 10) for mHRA and 53wks (+/− 2) for cHRA post op. Walking trials started at 4km/h and increased in 0.5km/h increments until a top walking speed (TWS) was achieved. Vertical ground reaction forces (GRF) were recorded along with the symmetry index (SI). Spatiotemporal measures of gait were also recorded. Vertical GRF were captured for the entire normalised stance phase using statistical parametric mapping (SPM; CI = 95%). The gain in OHS was similar: H1 (25-46), BHR(27-47). TWS increased by 19% with H1 (6.02 – 8.0km/hr), and 20% with BHR (6.02 – 7.37km/hr). SPM of the entire gait cycle illustrated the
Standard fixation for intra-articular distal humerus fracture is open reduction and internal fixation (ORIF). However, high energy fractures of the distal humerus are often accompanied with soft tissue injuries and or vascular injuries which limits the use of internal fixation. In our report, we describe a highly complex distal humerus fracture that showed promising healing via a ring external fixator. A 26-year-old man sustained a Gustillo Anderson Grade IIIB intra-articular distal humerus fracture of the non-dominant limb with bone loss at the lateral column. The injury was managed with aggressive wound debridement and cross elbow stabilization via a hinged ring external fixator. Post operative wound managed with foam dressing. Post-operatively, early controlled mobilization of elbow commenced. Fracture union achieved by 9 weeks and frame removed once fracture united. No surgical site infection or non-union observed throughout follow up. At 2 years follow up, flexion - extension of elbow is 20°- 100°, forearm supination 65°, forearm pronation 60° with no significant valgus or varus deformity. The extent of normal anatomic
Abstract. Background. Progressive muscle ischaemia results in reduced aerobic respiration and increased anaerobic respiration, as cells attempt to survive in a hypoxic environment. Acute compartment syndrome (ACS) is a progressive form of muscle ischaemia that is a surgical emergency resulting in the production of Lactic acid by cells through anaerobic respiration. Our previous research has shown that it is possible to measure H+ ions concentration (pH) as a measure of progressive muscle ischaemia (in vivo) and hypoxia (in vitro). Our aim was to correlate intramuscular pH readings and cell viability techniques with the intramuscular concentration of key metabolic biomarkers [adenosine triphosphate (ATP), Phosphocreatine (PCr), lactate and pyruvate], to assess overall cell health in a hypoxic tissue model. Methods. Nine euthanised Wistar rats were used in a non-circulatory model. A pH catheter was used to measure real-time pH levels from one of the exposed gluteus medius muscles, while muscle biopsies were taken from the contralateral gluteus medius at the start of the experiment and subsequently at every 0.1 of a pH unit decline. The metabolic biomarkers were extracted from the snap frozen muscle biopsies and analyzed with standard fluorimetric method. Another set of biopsies were stained with Hoechst 33342, Ethidium homodimer-1 and Calcein am and imaged with a Zeiss LSM880 confocal microscope. Results. Our study shows that the direct pH electrode readings decrease with time and took an average of 69 minutes to drop to a pH of 6.0. The concentrations of ATP, pyruvate and PCr declined over time, and the concentration of lactate increased over time. At pH 6.0, both ATP and PCr concentrations had decreased by 20% and pyruvate has decreased by 50%, whereas lactate had increased 6-fold. The majority of cells were still viable at a pH of 6.0, suggesting that skeletal muscle cells are remarkably robust to hypoxic insult, although this was a hypoxic model where reperfusion was not possible. Conclusions. Our research suggests that histologically, skeletal muscle cells are remarkably robust to hypoxic insult despite the reduction in the total adenine nucleotide pool, but this may not reflect the full extent of cell injury and quite possibly irreversible injury. The timely
Menisci are crucial structures for knee homeostasis: they provide increase of congruence between the articular surfaces of the distal femur and tibial plateau, bear loading, shock absorption, lubrication, and proprioception. After a meniscal lesion, the golden rule, now, is to save as much meniscus as possible: only the meniscus tissue which is identified as unrepairable should be excised and meniscal sutures find more and more indications. Several different methods have been proposed to improve meniscal healing. They include very basic techniques, such as needling, abrasion, trephination and gluing, or more complex methods, such as synovial flaps, meniscal wrapping, or the application of fibrin clots. Basic research of meniscal substitutes has also become very active in the last decades. The features needed for a meniscal scaffold are: promotion of cell migration, it should be biomimetic and biocompatible, it should resist forces applied and transmitted by the knee, it should slowly biodegrade and should be easy to handle and implant. Several materials have been tested, that can be divided into synthetic and biological. The first have the advantage to be manufactured with the desired shapes and sizes and with precise porosity dimension and biomechanical characteristics. To date, the most common polymers are polylactic acid (PGA); poly-(L)-lactic acid (PLLA); poly- (lactic-co-glycolic acid) (PLGA); polyurethane (PU); polyester carbon and polycaprolactone (PCL). The possible complications, more common in synthetic than natural polymers are poor cell adhesion and the possibility of developing a foreign body reaction or aseptic inflammation, leading to alter the joint architecture and consequently to worsen the functional outcomes. The biological materials that have been used over time are the periosteal tissue, the perichondrium, the small intestine submucosa (SIS), acellular porcine meniscal tissue, bacterial cellulose. Although these have a very high biocompatibility, some components are not suitable for tissue engineering as their conformation and mechanical properties cannot be modified. Collagen or proteoglycans are excellent candidates for meniscal engineering, as they maintain a high biocompatibility, they allow for the modification of the porosity texture and size and the adaptation to the patient meniscus shape. On the other hand, they have poor biomechanical characteristics and a more rapid degradation rate, compared to others, which could interfere with the complete replacement by the host tissue. An interesting alternative is represented by hydrogel scaffolds. Their semi-liquid nature allows for the generation of scaffolds with very precise geometries obtained from diagnostic images (i.e. MRI). Promising results have been reported with alginate and polyvinyl alcohol (PVA). Furthermore, hydrogel scaffolds can be enriched with growth factors, platelet-rich plasma (PRP) and Bone Marrow Aspirate Concentrate (BMAC). In recent years, several researchers have developed meniscal scaffolds combining different biomaterials, to optimize the mechanical and biological characteristics of each polymer. For example, biological polymers such as chitosan, collagen and gelatin allow for excellent cellular interactions, on the contrary synthetic polymers guarantee better biomechanical properties and greater reliability in the degradation time. Three-dimensional (3D) printing is a very interesting method for meniscus repair because it allows for a patient-specific customization of the scaffolds. The optimal scaffold should be characterized by many biophysical and biochemical properties as well as bioactivity to ensure an ECM-like microenvironment for cell survival and differentiation and
The Anterior Cruciate Ligament (ACL) plays a vital role in maintaining function and stability in the knee. Over the last several decades, much research has been focused on elucidating the anatomy, structural properties, biomechanics, pathology, and optimal treatments for the ACL. Through careful and objective study, the ACL can be understood to be a dynamic structure, rich in neurovascular supply. Although it is referred to as one ligament, it is comprised of two dis-tinct bundles which function synergistically to facilitate normal knee kinematics. The bony morphology of the knee defines normal knee kinematics, as well as the nature of the soft-tissue structures about the knee. Characterized by individual uniqueness, bony morphology varies from patient to patient. The ACL, which is a reflection of each patient's unique bony morphol-ogy, is inherently subject to both anatomic and morphologic variation as well. Furthermore, the ACL is subject to physiologic aging, which can affect the anatomic and structural properties of the ligament over time. A successful anatomic ACL Reconstruction, which may be considered the functional
In the last decades, significant effort has been attempted to salvage the meniscus following injury. Basic science approaches to meniscus repair include procedures for both meniscus regeneration and meniscus healing. Regeneration of meniscal tissue focuses on filling a defect with reparative tissue, which resembles the native structure and function of the meniscus. Procedures for meniscus healing, on the other hand, aim to accomplish adhesion between the margins of a meniscal lesion, with no attempt to regenerate or replace meniscal tissue. Regeneration studies of tissue to fill a defect in the meniscus have shown interesting results, but complete
Treatment of large bone defects represents a great challenge for orthopedic surgeons. The main causes are congenital abnormalities, traumas, osteomyelitis and bone resection due to cancer. Each surgical method for bone reconstruction leads its own burden of complications. The gold standard is considered the autologous bone graft, either of cancellous or cortical origin, but due to graft resorption and a limitation for large defect, allograft techniques have been identified. In the bone defect, these include the placement of cadaver bone or cement spacer to create the ‘Biological Chamber’ to restore bone regeneration, according to the Masquelet technique. We report eight patients, with large bone defect (for various etiologies and with an average size defect of 13.3 cm) in the lower and upper limbs, who underwent surgery at our Traumatology Department, between January 2019 and October 2020. Three patients were treated with both cortical and cancellous autologous bone grafts, while five received cortical or cement spacer allografts from donors. They underwent pre and postoperative radiographs and complete osseointegration was observed in all patients already undergoing monthly radiographic checks, with a
Minimally invasive surgery for the
Introduction and Objective. In recent years, along with the extending longevity of patients and the increase in their functional demands, the number of annually performed RSA and the incidence of complications are also increasing. When a complication occurs, the patient often needs multiple surgeries to restore the function of the upper limb. Revision implants are directly responsible for the critical reduction of the bone stock, especially in the shoulder. The purpose of this paper is to report the use of allograft bone to restore the bone stock of the glenoid in the treatment of an aseptic glenoid component loosening after a reverse shoulder arthroplasty (RSA). Materials and Methods. An 86-years-old man came to our attention for aseptic glenoid component loosening after RSA. Plain radiographs showed a complete dislocation of the glenoid component with 2 broken screws in the neck of glenoid. CT scans confirmed the severe reduction of the glenoid bone stock and critical bone resorption and were used for the preoperative planning. To our opinion, given the critical bone defect, the only viable option was revision surgery with