Advertisement for orthosearch.org.uk
Results 1 - 2 of 2
Results per page:
Bone & Joint Research
Vol. 2, Issue 1 | Pages 9 - 17
1 Jan 2013
Xia Y

This review briefly summarises some of the definitive studies of articular cartilage by microscopic MRI (µMRI) that were conducted with the highest spatial resolutions. The article has four major sections. The first section introduces the cartilage tissue, MRI and µMRI, and the concept of image contrast in MRI. The second section describes the characteristic profiles of three relaxation times (T1, T2 and T) and self-diffusion in healthy articular cartilage. The third section discusses several factors that can influence the visualisation of articular cartilage and the detection of cartilage lesion by MRI and µMRI. These factors include image resolution, image analysis strategies, visualisation of the total tissue, topographical variations of the tissue properties, surface fibril ambiguity, deformation of the articular cartilage, and cartilage lesion. The final section justifies the values of multidisciplinary imaging that correlates MRI with other technical modalities, such as optical imaging. Rather than an exhaustive review to capture all activities in the literature, the studies cited in this review are merely illustrative.


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_11 | Pages 129 - 129
1 Jul 2014
Oomen P Meijer K van der Westen R Gransier R Emans P van Rhijn L
Full Access

Summary. The quantification of T1Rho relaxation times is not related with internal loading. Improvements in modeling and imaging techniques might lead to better understanding of the pathomechanics of the knee. Introduction. The onset and progression of knee osteoarthritis has been associated with an increased external knee adduction moment (EKAM). However, this external measure has no direct relationship with internal loading of the knee. For a better understanding of the pathomechanics of the knee musculoskeletal models could be used to relate external and internal knee loading. Consequently, high internal loading might cause cartilage degeneration in patients with OA. T1RhoMRI can detect changes in proteoglycan content and is therefore a non-invasive measure of cartilage degeneration in knee OA. The purpose of this study was to relate internal loading of the knee simulated by musculoskeletal models with cartilage health using T1rhoMRI. Patients & Methods. Preliminary results showed data of seven women (50–65yrs), four healthy and three OA. Subjects underwent 3D gait analysis (VICON Nexus) at comfortable walking speed, EKAM was calculated. Simulations of multi-body musculoskeletal models were driven based on the motion capture data, in order to calculate internal medial-lateral knee forces (MLforce). Besides a T1RhoMRI scan of the knee (Phillips 3T) provided cartilage health of the midsection of the medial condyle according to Pedersen et al, 2011 [4]. Differences between healthy and OA were tested with a one sided T-test, correlations between EKAM and MLforce were calculated. Results. Anthropometrics and walking speed showed no significantly different between OA patients and healthy controls. OA patients had significant larger EKAM and MLforce (p<0.05). T1Rho values were not significantly different between the groups. EKAM was positively correlated with MLforce (R. 2. =0.91, p<0.05) in healthy subjects, no association was found in knee OA patients (R. 2. < 0.01). Discussion / Conclusion. The current study demonstrates that external loading of the knee does not predict internal loading in knee OA patients. We did not find a significant effect of knee OA on cartilage quality assessed by T1Rho MRI. However a non-significant increase was visible at the posterior region of the femoral condyle in OA patients. This elevated T1Rho relaxation is in line with expectations and could be related to an increased cartilage degeneration