Advertisement for orthosearch.org.uk
Results 1 - 20 of 892
Results per page:
Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_13 | Pages 3 - 3
1 Dec 2022
Getzlaf M Sims L Sauder D
Full Access

Intraoperative range of motion (ROM) radiographs are routinely taken during scaphoidectomy and four corner fusion surgery (S4CF) at our institution. It is not known if intraoperative ROM predicts postoperative ROM. We hypothesize that patients with a greater intra-operativeROM would have an improved postoperative ROM at one year, but that this arc would be less than that achieved intra- operatively. We retrospectively reviewed 56 patients that had undergone S4CF at our institution in the past 10 years. Patients less than 18, those who underwent the procedure for reasons other than arthritis, those less than one year from surgery, and those that had since undergone wrist arthrodesis were excluded. Intraoperative ROM was measured from fluoroscopic images taken in flexion and extension at the time of surgery. Patients that met criteria were then invited to take part in a virtual assessment and their ROM was measured using a goniometer. T-tests were used to measure differences between intraoperative and postoperative ROM, Pearson Correlation was used to measure associations, and linear regression was conducted to assess whether intraoperative ROM predicts postoperative ROM. Nineteen patients, two of whom had bilateral surgery, agreed to participate. Mean age was 54 and 14 were male and 5 were male. In the majority, surgical indication was scapholunate advanced collapse; however, two of the participants had scaphoid nonunion advanced collapse. No difference was observed between intraoperative and postoperative flexion. On average there was an increase of seven degrees of extension and 12° arc of motion postoperatively with p values reaching significance Correlation between intr-operative and postoperative ROM did not reach statistical significance for flexion, extension, or arc of motion. There were no statistically significant correlations between intraoperative and postoperative ROM. Intraoperative ROM radiographs are not useful at predicting postoperative ROM. Postoperative extension and arc of motion did increase from that measured intraoperatively


Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_13 | Pages 58 - 58
1 Dec 2022
Ruzbarsky J Comfort S Pierpoint L Day H Philippon M
Full Access

As the field of hip arthroscopy continues to develop, functional measures and testing become increasingly important in patient selection, managing patient expectations prior to surgery, and physical readiness for return to athletic participation. The Hip Sport Test (HST) was developed to assess strength, coordination, agility, and range of motion prior to and following hip arthroscopy as a functional assessment. However, the relationship between HST and hip strength, range of motion, and hip-specific patient reported outcome (PRO) measures have not been investigated. The purpose of this study was to evaluate the correlation between the HST scores and measurements of hip strength and range of motion prior to undergoing hip arthroscopy. Between September 2009 and January 2017, patients aged 18-40 who underwent primary hip arthroscopy for the treatment of femoroacetabular impingement with available pre-operative HST, dynamometry, range of motion, and functional scores (mHHS, WOMAC, HOS-SSS) were identified. Patients were excluded if they were 40 years old, had a Tegner activity score < 7, or did not have HST and dynamometry evaluations within one week of each other. Muscle strength scores were compared between affected and unaffected side to establish a percent difference with a positive score indicating a weaker affected limb and a negative score indicating a stronger affected limb. Correlations were made between HST and strength testing, range of motion, and PROs. A total of 350 patients met inclusion criteria. The average age was 26.9 ± 6.5 years, with 34% females and 36% professional athletes. Total and component HST scores were significantly associated with measure of strength most strongly for flexion (rs = −0.20, p < 0 .001), extension (rs = −0.24, p<.001) and external rotation (rs = −0.20, p < 0 .001). Lateral and diagonal agility, components of HST, were also significantly associated with muscle strength imbalances between internal rotation versus external rotation (rs = −0.18, p=0.01) and flexion versus extension (rs = 0.12, p=0.03). In terms of range of motion, a significant correlation was detected between HST and internal rotation (rs = −0.19, p < 0 .001). Both the total and component HST scores were positively correlated with pre-operative mHHS, WOMAC, and HOS-SSS (p<.001 for all rs). The Hip Sport Test correlates with strength, range of motion, and PROs in the preoperative setting of hip arthroscopy. This test alone and in combination with other diagnostic examinations can provide valuable information about initial hip function and patient prognosis


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_20 | Pages 8 - 8
1 Nov 2016
Griffiths M Langohr G Athwal G Johnson J
Full Access

There are a variety of sizes currently available for reverse total shoulder arthroplasty (RTSA) implant systems. Common sizing options include a smaller 36 to 38 mm or a larger 40 to 42 mm glenosphere, and are typically selected based on surgeon preference or patient size. Previous studies have only evaluated the abduction and adduction range of motion within a single plane of elevation, providing a limited view of the joint's possible range of motion. The purpose of this study was to use computer modeling to evaluate the abduction and adduction range of motion across multiple planes of elevation for a range of glenosphere sizes. Computed tomography images of four cadaveric specimens (age: 54 ± 24 years) were used to obtain the osseous anatomy to be utilised in the model. Solid-body motion studies of the RTSA models were constructed with varying glenosphere diameters of 33, 36, 39, 42, and 45 mm in Solidworks (Dassault Systems, US). The implant components were scaled, while maintaining a consistent centre of rotation. Simulations encompassing the full range of abduction and adduction were conducted for the planes of elevation between −15˚ and 135˚ at 15˚ intervals, with the motion of the humerus being constrained in neutral internal-external rotation throughout all planes. Angles of elevation were obtained utilising the humeral long axis and the RTSA centre of rotation. Statistical analysis was performed using repeated measures ANOVA. Glenosphere diameter was found to significantly affect the adduction range of motion (p=0.043), in which the largest size provided approximately 17˚ more adduction range of motion than the smallest. However, abduction range of motion was not found to be significantly affected through the alteration of glenosphere size (p=0.449). The plane of elevation was not found to significantly affect abduction or abduction (p=0.585 & p=0.225, respectively). Increasing glenosphere diameter resulted in an increased adduction range of motion when averaged across the tested planes of elevation; however the observed influence on abduction was not significant. These are similar to the trends observed in the previous single plane of elevation studies. These findings illustrate the importance of implant sizing related to range of motion. Further studies are required to determine the influence of glenosphere size on internal and external range of motion


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_3 | Pages 11 - 11
1 Mar 2021
Wong M Wiens C Kooner S Buckley R Duffy P Korley R Martin R Sanders D Edwards B Schneider P
Full Access

Nearly one quarter of ankle fractures have a recognized syndesmosis injury. An intact syndesmosis ligament complex stabilizes the distal tibio-fibular joint while allowing small, physiologic amounts of relative motion. When injured, malreduction of the syndesmosis has been found to be the most important independent factor that contributes to inferior functional outcomes. Despite this, significant variability in surgical treatment remains. This may be due to a poor understanding of normal dynamic syndesmosis motion and the resultant impact of static and dynamic fixation on post-injury syndesmosis kinematics. As the syndesmosis is a dynamic structure, conventional CT static images do not provide a complete picture of syndesmosis position, giving potentially misleading results. Dynamic CT technology has the ability to image joints in real time, as they are moved through a range-of-motion (ROM). The aim of this study was to determine if syndesmosis position changes significantly throughout ankle range of motion, thus warranting further investigation with dynamic CT. This is an a priori planned subgroup analysis of a larger multicentre randomized clinical trial, in which patients with AO-OTA 44-C injuries were randomized to either Tightrope or screw fixation. Bilateral ankle CT scans were performed at 1 year post-injury, while patients moved from maximal dorsiflexion (DF) to maximal plantar flexion (PF). In the uninjured ankles, three measurements were taken at one cm proximal to the ankle joint line in maximal DF and maximal PF: Anterior (ASD), middle (MSD), and posterior (PSD) syndesmosis distance, in order to determine normal syndesmosis position. Paired samples t-tests compared measurements taken at maximal DF and maximal PF. Twelve patients (eight male, six female) were included, with a mean age of 44 years (±13years). The mean maximal DF achieved was 1-degree (± 7-degrees), whereas the mean maximal PF was 47-degrees (± 8-degrees). The ASD in DF was 3.0mm (± 1.1mm) versus 1.9mm (± 0.8mm) in PF (p<0.01). The MSD in DF was 3.3mm (±1.1mm) versus 2.3mm (±0.9mm) in PF (p<0.01). The PSD in DF was 5.3mm (±1.5mm) versus 4.6mm (±1.9mm) in PF (p<0.01). These values are consistent with the range of normal parameters previously reported in the literature, however this is the first study to report the ankle position at which these measurements are acquired and that there is a significant change in syndesmosis measurements based on ankle position. Normal syndesmosis position changes in uninjured ankles significantly throughout range of motion. This motion may contribute to the variation in normal anatomy previously reported and controversies surrounding quantifying anatomic reduction after injury, as the ankle position is not routinely standardized, but rather static measurements are taken at patient-selected ankle positions. Dynamic CT is a promising modality to quantify normal ankle kinematics, in order to better understand normal syndesmosis motion. This information will help optimize assessment of reduction methods and potentially improve patient outcomes. Future directions include side-to-side comparison using dynamic CT analysis in healthy volunteers


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXXIX | Pages 217 - 217
1 Sep 2012
Majed A Krekel P Charles B Neilssen R Reilly P Bull A Emery R
Full Access

Introduction. The reliability of currently available proximal humeral fracture classi?cation systems has been shown to be poor, giving rise to the question whether a more objective measure entails improved predictability of surgical outcome. This study aims to apply a novel software system to predict the functional range of motion of the glenohumeral joint after proximal humeral fracture. Method. Using a validated system that simulates bone-determined range of motion of spheroidal joints such as the shoulder joint, we categorically analysed a consecutive series of 79 proximal humeral fractures. Morphological properties of the proximal humerus fractures were related to simulated bone-determined range of motion. Results. The interobserver variability of range of motion assessment using our system showed excellent agreement (0.798). Maximal glenohumeral abduction and forward ?exion of intra-articular fractures were 34.3±6.6 SE and 60.7±12.4 SE degrees. For fractures with a displaced greater tuberosity abduction was 75.0±5.9 SE and forward flexion was 118.2±4.9 SE degrees, whilst for fractures where both tuberosities had been displaced they were 60.0±10.9 SE and 69.6±13.4 SE degrees respectively. For non-intra articular fractures without displaced tuberosities movements were 89.3±3.3 SE and 122.6±3.4 SE degrees respectively. The head inclination angle was positively correlated with maximum abduction (0.362, p = 0.014). Offset was negatively correlated with maximum abduction, but not statistically signi?cant (0.834, p = 0.087). Conclusion. This study has demonstrated a novel and effective tool allowing the prediction of functional motion after proximal humeral fracture based on bone anatomy. The study demonstrates that intra-articular fractures generally have the worst prognosis with regards to bone-determined ROM. Fractures with displaced tuberosities show more motion limitations for abduction than for forward ?exion. A reduced head inclination angle is a strong predictor of limited bone-determined range of motion for all types of proximal humerus fractures


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_5 | Pages 17 - 17
23 Apr 2024
Mackarel C Tunbridge R
Full Access

Introduction. Sheffield Children's Hospital specialises in limb lengthening for children. Soft tissue contracture and loss of range of motion at the knee and ankle are common complications. This review aims to look at therapeutic techniques used by the therapy team to manage these issues. Materials & Methods. A retrospective case review of therapy notes was performed of femoral and tibial lengthening's over the last 3 years. Included were children having long bone lengthening with an iIntramedullary nail, circular frame or mono-lateral rail. Patients excluded were any external fixators crossing the knee/ankle joints. Results. 20 tibial and 25 femoral lengthening's met the inclusion criteria. Pathologies included, complex fractures, limb deficiency, post septic necrosis and other congenital conditions leading to growth disturbance. All patients had issues with loss of motion at some point during the lengthening process. The knee and foot/ankle were equally affected. Numerous risk factors were identified across the cohort. Treatment provided included splinting, serial casting, bolt on shoes, exercise therapy, electrical muscle stimulation and passive stretching. Conclusions. Loss of motion in lower limb joints was common. Patients at higher risk were those with abnormal anatomy, larger target lengthening's, poor compliance or lack of access to local services. Therapy played a significant role in managing joint motion during treatment. However, limitations were noted. No one treatment option gave preferential outcomes, selection of treatment needed to be patient specific. Future research should look at guidelines to aid timely input and avoid secondary complications


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_1 | Pages 22 - 22
1 Jan 2016
Aratake M Mitsugi N Taki N Ota H Shinohara K Sasaki Y Saito T
Full Access

Introduction. Selection of an optimum thickness of polyethylene insert in total knee arthroplasty (TKA) is important for the good stability and range of motion (ROM). The purpose of this study is to investigate the amount of change of ROM as the thickness of trial insert increase. Material and Method. The study included 86 patients with 115 knees undergoing TKA from October 2012 to February 2014. There were 17 men and 69 women with an average age of 75±8 (58–92) years. The implants posterior stabilized knee (Scorpio NRG, Stryker) was used and all prostheses were fixed with cement. The ROM was measured by the goniometer under the general anesthesia at the time of operation in increments of 1°. Preoperative flexion angle was measured by passively flexing the patient's hip 90 degrees and allowing the weight of the leg to flex the knee joint (Lee et al 1998). Extension angle was measured by holding the heel and raising the leg by another examiner. During TKA, flexion and extension angle was measured in a similar manner when each insert trial (8, 10, 12, and 15mm) was inserted. After the wound closure and removing the draping, ROM was measured again. Statistical analysis of range of motion was performed using a paired t-test to determine significance. Results. Preoperative extension angle was-11.8±7.5°and flexion angle was 125.4±14.9 °. postoperative extension angle after removing drapes was −5.0±3.4°and flexion angle was126.4±8.8°. Although extension angle was improved statistically (p<0.001), flexion angle was not improved. Intraoperative extension and flexion angle that were measured with the same thick insert trial as the polyethylene insert finally selected was −3.7±3.0°and 120.8±9.8°respectively. The thickness of polyethylene insert finally set was 8mm (28knees), 10mm (58knee), 12mm (24 knee), and 15mm (5knee). The amount of deficit in extension ROM by changing the trial inserts those were measured intraoperatively were 2.5±2.2° (n=112, 8 to 10mm, p<0.01), 3.2±2.8° (n=80, 10 to 12mm, p< 0.01), and 4.7±2.5° (n=15, 12 to 15mm, p<0.01). Flexion angle was 0.6±4.3° (8 to 10mm, n.s), 1.5±4.0° (10 to 12mm, p=0.002), 2.6±4.0° (12 to 15mm, p=0.025). Discussion. Although it is important to select a sufficient thick polyethylene insert to prevent postoperative instability, excessive thick polyethylene can decrease ROM especially extension. In many type of prosthesis, thickness of polyethylene insert differs every 2 mm is prepared. In the current study, if the thickness of polyethylene is increased 2mm (8 to10mm and 10 to 12mm) or 3mm (12 to15mm), extension and flexion angle was decreased 2.5–4.7°and 0.6–2.6°respectively


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXXVIII | Pages 155 - 155
1 Sep 2012
Elkinson I Giles JW Faber KJ Boons HW Ferreira LM Johnson JA Athwal GS
Full Access

Purpose. The remplissage procedure may be performed as an adjunct to Bankart repair to address an engaging Hill-Sachs defect. Clinically, it has been reported that the remplissage procedure improves joint stability but that it may also restrict shoulder range of motion. The purpose of this biomechanical study was to examine the effects of the remplissage procedure on shoulder motion and stability. We hypothesized that the remplissage procedure would improve stability and prevent engagement but may have a deleterious effect on motion. Method. Eight cadaveric forequarters were mounted on a custom biomechanical testing apparatus which applied simulated loads independently to the rotator cuff muscles and to the anterior, middle and posterior deltoid. The testing conditions included: intact shoulder, Bankart defect, Bankart repair, 2 Hill-Sachs defects (15%, 30%) with and without remplissage. Joint range of motion and translation were recorded with an optical tracking system. Outcomes measured were internal-external rotation range of motion in adduction and 90 combined abduction, extension range of motion and stability, quantified in terms of joint stiffness and engagement, in abduction. Results. With a 15% Hill-Sachs defect, the remplissage significantly reduced internal-external rotation in adduction (15.111.1, p=0.039), but not in abduction (7.79.0, p=0.380). In a 30% Hill-Sachs defect, the remplissage procedure significantly reduced internal-external rotation in adduction (19.57.8, p=0.001), and in abduction (12.28.6, p=0.03). The remplissage procedure significantly enhanced stability in the 15% Hill-Sachs defect (4.74.0 N/mm, p=0.038), and in the 30% defect (3.93.2 N/mm, P=0.030) compared to the unrepaired defect. All of the unrepaired 30% defects engaged and the remplissage procedure successfully eliminated engagement in each case. However, impingement of the repair on the posterior glenoid with paradoxical posterior pivoting of the humeral head was observed in 50% of the specimens. Conclusion. The remplissage procedure significantly augmented a Bankart repair in 15% and 30% Hill-Sachs defects and, in 30% Hill-Sachs defects, the remplissage successfully prevented engagement of the defect. The remplissage procedure, however, did significantly reduced shoulder internal-external rotation range of motion as reported clinically, and was also found to reduce extension in the two defect groups. During extension the intra-articular soft tissue bumper created by the remplissage procedure was found to impinge on the posterior glenoid rim and cause pivoting, which produced non-physiologic glenohumeral joint distraction. Therefore, the remplissage procedure stabilized the joint to a significantly greater degree than did a Bankart repair alone; however, it also significantly reduced shoulder range of motion


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_10 | Pages 65 - 65
1 May 2016
Takayama K Matsumoto T Muratsu H Ishida K Kuroda R Kurosaka M
Full Access

The influence of amount of tibial posterior slope changes on joint gap and postoperative range of motion was investigated in 35 patients undergoing unicompartmental knee arthroplasty (UKA). Component gap between the medial tibial osteotomy surface and the femoral trial prosthesis was measured throughout the range of motion using a tensor. The mean tibial posterior slope decreased from 10.2 to 7.3 degrees. Increased tibial slope change was positively correlated with component gap differences of 90° −10°, 120° −10°, and 135° −10° and negatively correlated with postoperative extension angle. Increasing tibial slope should be avoided to achieve full extension angle after UKA


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_13 | Pages 4 - 4
1 Sep 2014
Dachs R Roche S Chivers D Fleming M
Full Access

Aim. To compare radiological and clinical outcomes between triceps-detaching and triceps-sparing approaches in total elbow arthroplasty, with specific focus on cementing technique and post-operative range of motion. Methods. A retrospective review was completed of medical records and radiographs of 56 consecutively managed patients who underwent a primary total elbow arthroplasty between 2000 and 2012 at a tertiary hospital. Rheumatoid Arthritis was the predominant pathology (47/56). Data analysed included patient demographics, range of motion pre-operatively and at various stages post-operatively, approach utilized, operative time and complications. Cementing technique was graded as adequate, marginal or inadequate according to Morrey's criteria. Results. 12 patients were lost to follow-up or had incomplete records, leaving 44 patients for analysis. 15 patients had a triceps-sparing approach, and 29 had a variation of a triceps-detaching approach. Average follow-up was 56.1 months. Flexion range of motion in the triceps-sparing group improved from 25°–122° (±19.6°) pre-op to 10°–140° (±22.5°) at final follow-up, and in the triceps-detaching group from 41°–104° (± 22.2°) pre-op to 27°–129° (±35.0°) at final follow-up. Tourniquet time averaged 85.4 (±17.0) minutes for the triceps-sparing group and 96.1 (±22.6) minutes for the triceps-detaching group. The complication rate in the triceps-sparing group was 13.3%, and included one olecranon fracture and one case of superficial wound sepsis. The complication rate for the triceps-detaching group was 24.1%, and included one patient with persistent ulnar nerve symptoms requiring transposition, one medial condyle fracture and five triceps ruptures. Three patients who had attempted repairs of the rupture developed deep infections requiring multiple further surgeries. Cementing technique was adequate in 91.7% in the triceps-sparing group and in 70.6% in the triceps-detaching group and marginal in the remainder of the cohort. Conclusion. A triceps-sparing approach results in a predictable improvement in range of motion with no compromise of the cement mantle. NO DISCLOSURES


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_1 | Pages 61 - 61
1 Feb 2020
Kaper B
Full Access

Introduction/Aim. Mid-flexion instability is a well-documented, but often poorly understood cause of failure of TKA. NAVIO robotic-assisted TKA (RA-TKA) offers a novel, integrative approach as a planning, execution as well as an evaluation tool in TKA surgery. RA-TKA provides a hybrid planning technique of measured resection and gap balancing- generating a predictive soft-tissue balance model, prior to making cuts. Concurrently, the system uses a semi-active robot to facilitate both the execution and verification of the plan, as it pertains to both the static and dynamic anatomy. The goal of this study was to assess the ability of the NAVIO RA-TKA to plan, execute and deliver an individualized approach to the soft-tissue balance of the knee, specifically in the “mid-flexion” arc of motion. Materials and Methods. Between May and September 2018, 50 patients underwent NAVIO RA-TKA. Baseline demographics were collected, including age, gender, BMI, and range of motion. The NAVIO imageless technique was used to plan the procedure, including: surface-mapping of the static anatomy; objective assessment of the dynamic, soft-tissue anatomy; and then application of a hybrid of measured-resection and gap-balancing technique. Medial and lateral gaps as predicted by the software were recorded throughout the entire arc of motion at 15° increments. After executing the plan and placing the components, actual medial and lateral gaps were recorded throughout the arc of motion. Results. In the assessment of coronal-plane balance, the average deviation from the predicted plan between 0–90° was 0.9mm in both the medial and lateral compartments (range 0.5–1.2mm). In the mid-flexion arc (15–75°), final soft-tissue stability was within 1.0mm of the predictive plan (range 0.9–1.2mm). Discussion/Conclusions. In this study, NAVIO RA-TKA demonstrated a highly accurate and reproducible surgical technique to plan, execute and verify a balanced a soft-tissue envelope in TKA. Objective soft-tissue balancing of the TKA can now be performed, including the mid-flexion arc of motion. Further analysis can determine if these objective measurements will translate into improved patient-reported outcome scores


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXXIX | Pages 14 - 14
1 Sep 2012
Hossain M Beard D Andrew G
Full Access

Introduction. There is uncertainty about the relationship between improvement in range of motion (ROM) and functional outcome or patient satisfaction after total hip arthroplasty (THA). Using data from a prospective multi-centre study we investigated this relationship. Methods. We recorded the Oxford Hip Score (OHS), Merle d'Aubigne and Postel score (MDA) and range of motion (ROM) preoperatively and at one and five years and a patient satisfaction questionnaire at five years. Complete 5 year data were available for 342 patients. Results. Improvement in ROM between one and five years was significant but minimal (p=0.005, year 1: mean 191(0–280), year 5: mean 191(70–300). Both absolute ROM (year 1, r=0.27; year 5, r=0.40) and ROM gain (r=0.45, 0.59) had a significant linear correlation (p=0.000). ROM improvement and MDA gain at five years had the best association and predicted 34% of the variability of the model. Absolute and ROM gain both had a linear correlation with OHS gain (p=0.001), but their predictive value was poor. ROM gain predicted OHS gain better than absolute ROM (year 1, r= 0.22 vs 0.10; year 5, r= 0.23 vs 0.09). The strongest association was between ROM gain and OHS gain at 5 years that explained 5% of the variability. There was no difference in absolute or ROM gain between those who were satisfied and not with surgery. Conclusion. There was minimal improvement in ROM after first year. ROM predicted surgeon reported assessment but not patient reported outcome. Relative gain predicted OHS improvement better than absolute ROM but did not affect patient satisfaction. It may be unnecessary to review patients in person to assess ROM after THA


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XL | Pages 214 - 214
1 Sep 2012
Walscharts S Corten K Bartels W Jonkers I Bellemans J Simon J Vander Sloten J
Full Access

The 3D interplay between femoral component placement on contact stresses and range of motion of hip resurfacing was investigated with a hip model. Pre- and post-operative contours of the bone geometry and the gluteus medius were obtained from grey-value CT-segmentations. The joint contact forces and stresses were simulated for variations in component placement during a normal gait. The effect of component placement on range of motion was determined with a collision model. The contact forces were not increased with optimal component placement due to the compensatory effect of the medialisation of the center of rotation. However, the total range of motion decreased by 33%. Accumulative displacements of the femoral and acetabular center of rotation could increase the contact stresses between 5–24%. Inclining and anteverting the socket further increased the contact stresses between 6–11%. Increased socket inclination and anteversion in combination with shortening of the neck were associated with extremely high contact stresses. The effect of femoral offset restoration on range of motion was significantly higher than the effect of socket positioning. In conclusion, displacement of the femoral center of rotation in the lateral direction is at least as important for failure of hip resurfacings as socket malpositioning


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXV | Pages 168 - 168
1 Jun 2012
Nasser E Tarabichi S
Full Access

We hypothesize that tethering adhesions of the quadriceps muscle are the major pathological structures responsible for a limited range of motion in the stiff arthritic knee. Forty-two modified quadriceps muscle releases were performed on 24 patients with advanced osteoarthritis scheduled for total knee arthroplasty. The ranges of motion were documented intraoperatively both before and immediately after the release. Passive flexion improved significantly in all patients (mean, 32.4 degrees of improvement, P < .001) following a modified quadriceps release, despite any presence of osteophytes or severe deformities. These results strongly implicate adhesions of the quadriceps muscle to the underlying femur, which prevent the distal excursion of the quadriceps tendon, as the restrictive pathology preventing deep flexion in patients with osteoarthritis


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_7 | Pages 105 - 105
1 Jul 2020
Gusnowski E Schneider P Thomas K
Full Access

Distal radius fractures (DRF) are the most common fracture type in all age groups combined. Unstable DRF may be surgically managed with volar or dorsal plate fixation. Dorsal plating has traditionally been associated with decreased range of motion (ROM). However, this assumption has not been recently assessed to determine whether functional ROM is achievable (approximately 54o of flexion and 60o of extension) with recent advances in lower profile dorsal plate design. The aim of this study was therefore to compare ROM and patient reported outcome measures between volar and dorsal plating methods for DRF. A meta-analysis was performed to directly compare ROM and DASH scores between dorsal and volar plate fixation for DRF. Separate literature searches for each plating method were performed using MedLine and EMBase on January 28, 2018. Exclusion criteria consisted of non-English articles, basic science articles, animal/cadaver studies, case studies/series, combined operative approaches, papers published more than 20 years ago and paediatric studies. Only articles with at least one year patient follow-up and a) ROM and AO distal radius fracture classification, or b) DASH scores were included. Raw data was extracted from all articles that met inclusion criteria to compile a comprehensive dataset for analysis. Descriptive statistics with z-score comparison for AO classification or a two-tailed independent samples t-test for ROM and DASH scores for dorsal versus volar plating were performed. Significance was defined as p < 0 .05. After rigorous screening, 6 dorsal plating and 43 volar plating articles met inclusion criteria for ROM/AO classification versus 6 dorsal plating and 44 volar plating articles for DASH scores. The weighted means of flexion (dorsal 54.9o, SD 9.3, n=257, volar 61.3o, SD 11.5, n=1906) and extension (dorsal 60.0o, SD 12, n=257, volar 62.8o, SD 11.4, n=1906) were statistically significantly different (both p < 0 .001) between the two plating methods. The volar plating group had a significantly higher proportion of AO type C fractures (dorsal 0.5, n =169, volar 0.6, n=1246, p < 0 .001). The weighted means of reported DASH scores were not significantly different between dorsal (14.01, SD 14.8) versus volar (13.6, SD 12.8) plating (p=0.54). Though mean wrist flexion and extension were statistically different between the dorsal versus volar plating methods, the difference between group means was less than 5o, which is unlikely to be clinically significant. Additionally, we did not find a significant difference in DASH scores between the two plating methods. Taken together, these findings imply that the statistical difference in ROM outcomes are likely not clinically significant and should therefore not dictate choice of plating method for fixation of DRF


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_4 | Pages 1 - 1
1 Apr 2019
Kutsuna T Hino K Watamori K Kiyomatsu H Miura H
Full Access

Background. Patient satisfaction after total knee arthroplasty (TKA) has been lower than after a similar procedure, total hip arthroplasty. Poor subjective outcomes after TKA may be partially explained by abnormal kinematics patterns after TKA. The purpose of this study was to analyse rotational kinematics patterns in knees that had undergone posterior stabilized (PS)-TKA, and to clarify the relationships between rotational kinematics patterns and patient satisfaction, as well as between rotational kinematics patterns and knee function. Materials & Methods. A total of 49 osteoarthritis knees after primary PS-TKA (NexGen LPS-Flex fixed bearing knee system) were included in this study; deformed valgus, severe flexion contractures, and highly unstable knees were excluded. We used a computer navigation system and measured knee kinematics after each surgery was completed. A single investigator gently applied a manual range of motion from full extension to flexion. The angle of the internal rotation of the tibia was measured automatically at 0º, 30º, 45º, 60º, and 90º, along with maximum extension and flexion. We categorized the post-operative rotational kinematics patterns for individual cases, focusing on the initial knee flexion from 0–30º. Type A corresponded to an increased internal rotation angle of the tibia during the initial knee flexion (screw home-like movement). Type B corresponded to an increased external or an unchanged rotation angle of the tibia. We examined the range of motion (ROM) at 6 months after surgery and assessed the 2011 Knee Society Score (2011 KSS) at ≥1 year following surgery. Statistical analysis. The difference between the two groups was compared using a Wilcoxon rank sum test. Analyses were performed with JMP statistical software v8.0 (SAS Institute). A p-value of <0.05 was regarded as significant. Results. The tibia exhibited an average of 5º of internal rotation at initial knee flexion. The type A kinematics pattern achieved a better ROM and functional activity score (2011 KSS) than the type B kinematics pattern. Discussion. Modern TKA implants have been designed to reproduce normal knee kinematics to achieve better patient satisfaction and knee function. However, few reports have described the relationship between the rotational kinematics patterns at initial knee flexion and patient satisfaction. In our study, the type A postoperative rotational kinematics pattern (screw home-like movement) had better ROM and functional activity score than the type B kinematics pattern. The movement toward the internal rotation of the tibia during initial knee flexion might be important in achieving better clinical results after PS-TKA


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_34 | Pages 343 - 343
1 Dec 2013
Hayashi S Fujishiro T Hashimoto S Kanzaki N Nishiyama T Kurosaka M
Full Access

Introduction:. Implant dislocations are often caused by implant or bone impingement, and less impingement is critical to prevent dislocations. Several reports demonstrated that greater femoral offset delayed bony impingement and led to an improved range of motion (ROM) after THA. Therefore, an increase in the femoral offset may improve ROM and decrease implant dislocation. The aim of this study was to clarify the effect of the femoral offset in avoiding component or bony impingement after total hip arthroplasty (THA). Methods:. Seventy-eight patients underwent THA with a Pinnacle cup and Summit stem (DePuy). Intraoperative kinematic analysis was performed with a navigation system, which was used to obtain intraoperative range of motion (ROM) measurements during trial insertion of stems of 2 different offset lengths with the same head size. Further, ROM was also measured after actual component insertion. Results:. Maximal ROM was independent of the femoral offset of the stem in each patient (Figure 1). Further, we measured the intraoperative maximal ROM corresponding to high offset stems of 2 different lengths (stem sizes 1–3; + 6 mm, stem sizes 4–9; +8 mm), and compared the maximal ROMs between the standard- and high-offset stems. There were no statistically significant differences (Figure 2). These results indicate that an excessive offset length of the stem may not affect ROM. We also analyzed the correlation between femoral offset length and ROM, and found that the range of external rotation was significantly greater in patients with greater femoral offset (RR = 0.36, P = 0.02) (Figure 3). However, we could not show any correlation for the ROM values in the other planes of motion. Discussions:. Summit stem is available in 9 different sizes with standard offset lengths ranging from 36.0 mm to 44.0 mm. The average offset of Summit stem was larger than other stems. These differences in offset length could be the reason why the high offset stem did not change maximal ROM in our study. Further, the summit stem employs 2 different types of high offset lengths (+6 mm and +8 mm). We did not find any difference in maximal ROM even after using the +8 mm high offset stem. Our results indicated that even the Summit standard offset stem might have enough femoral offset to avoid implant/bone impingement. However, several reports showed that increasing stem offset increased the bending moment on the prosthesis and increased the strain in the medial cortex, and may lead to early failure of the femoral component. Nevertheless, selection of the offset stem should be performed carefully to prevent offset complications


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_8 | Pages 36 - 36
1 Aug 2020
Glaris Z Goetz TJ Li A Daneshvar P
Full Access

Four-Corner Fusions (4CF) and Proximal Row Carpectomies (PRC) are common procedures utilized to treat carpal pathologies and radial sided wrist pain. Usually, the range of motion (ROM) and grip strength (GS) is affected by such conditions. Literature quotes significant reduction in ROM (50–60%) and grip strength (GS) (80% of normal) with PRC and 4CF. This study aims to determine the correlation between pre-operative ROM and GS and post-operative ROM and GS for patients with wrist pain undergoing PRC or 4CF. We hypothesize that ROM between pre-operative and post-operative patients does not change, but GS improves. Data from a prospective database of patients with wrist pain was searched to identify patients who have undergone PRC or 4CF with one year follow-up completed in the past two years. 17 such participants were identified. The diagnosis, pre-operative ROM in flexion, extension, radial deviation, ulnar deviation, pronation and supination, as well as GS at time of surgery and at six months and one year follow up were identified and assessed. The data was analysed to determine correlation between pre-and postoperative ROM and GS. The analysis was subdivided to compare patients treated with PRC versus patients with 4CF. No significant difference between pre- and post-operative ROM was detected, except in flexion at 6 months post-operatively. The average flexion was significantly lower at 6 months (p=0.0251) compared to pre-operative levels. Average flexion pre-operatively and at 6 and 12 months was found to be 46.6 (SD=15), 34.3 (SD=13.3), 51.2 (SD=21.5) respectively. Extension was at 41.4 (SD=15.3) pre-operatively and at 33.4 (SD=12.8) and 42.1 (SD=15.5) at 6 and 12 months post-operatively. Similarly, radial and ulnar deviation averages pre-operatively and at 6 and 12 months post-operatively were found to be 11.33 (SD=5.9), 11.9 (SD=4.5), 16 (SD=8.2) [radial deviation] and 24.1 (SD=8.3), 21.4 (SD=7.3), 26 (SD=12.8) [ulnar deviation]. No significant difference was found in GS at 6 months post-operative. However, significant difference at 12 months post-operatively was observed with an average GS of 28.4 kg (SD=12.8) [p=0.0385]. Average GS pre-operatively and at 6 months was 15.8 kg (SD=9.7) and 17.3 kg (SD=8.9) respectively. This study provides an insight on ROM and GS after PRC and 4CF. It shows that patients do not gain or lose ROM after surgery. As expected, GS improves with treatment as the pain diminishes. It is interesting to note that flexion gets worse at 6 months post-operatively before it bounces back to pre-operative levels


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_8 | Pages 87 - 87
1 Aug 2020
Gusnowski E Schneider P
Full Access

Distal radius fractures (DRF) are the most common fracture type in all age groups combined. Unstable DRF may be surgically managed with volar or dorsal plate fixation. Dorsal plating has traditionally been associated with decreased range of motion (ROM). However, this assumption has not been recently assessed to determine whether functional ROM is achievable (approximately 54 degrees of flexion and 60 degrees of extension) with recent advances in lower profile dorsal plate design. The aim of this study was therefore to compare ROM and patient reported outcome measures between volar and dorsal plating methods for DRF. A meta-analysis was performed to directly compare ROM and Disabilities of Arm, Shoulder and Hand (DASH) scores between dorsal and volar plate fixation for DRF. Separate literature searches for each plating method were performed using MedLine and EMBase on January 28, 2018. Exclusion criteria consisted of non-English articles, basic science articles, animal/cadaver studies, case studies/series, combined operative approaches, papers published more than 20 years ago and paediatric studies. Only articles with at least one year patient follow-up and a) ROM and AO-OTA distal radius fracture classification, or b) DASH scores were included. Raw data was extracted from all articles that met inclusion criteria to compile a comprehensive dataset for analysis. Descriptive statistics with z-score comparison for AO-OTA classification or a two-tailed independent samples t-tests for ROM and DASH scores for dorsal versus volar plating were performed. Significance was defined as p < 0 .05. After rigorous screening, six dorsal plating and 43 volar plating articles met inclusion criteria for ROM/AO-OTA classification versus six dorsal plating and 44 volar plating articles for DASH scores. The weighted means of flexion (dorsal 54.9 degrees, SD 9.3, n=257, volar 61.3 degrees, SD 11.5, n=1906) and extension (dorsal 60 degrees, SD 12, n=257, volar 62.8 degrees, SD 11.4, n=1906) were significantly different (both p < 0 .001) between the two plating methods. The volar plating group had a significantly higher proportion of type C fractures (dorsal 0.5, n =169, volar 0.6, n=1246, p < 0 .001). The weighted means of reported DASH scores were not significantly different between dorsal (14, SD 14.8) versus volar (13.6, SD 12.8) plating (p=0.54). Though mean wrist flexion and extension were statistically different between the dorsal versus volar plating methods, the difference between group means was less than 5-degrees, which is unlikely to be clinically significant. Additionally, there was no significant difference in DASH scores between the two plating methods. Taken together, these findings imply that the statistical difference in ROM outcomes are likely not clinically significant and should therefore not dictate choice of plating method for fixation of DRF


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_9 | Pages 5 - 5
1 Feb 2013
Phillips A Goubran A Searle D Naim S Mandalia V Toms A
Full Access

We sought to validate a method of measuring the range of motion of knees on radiographs as part of a new system of “Virtual Knee Clinics”. The range of motion of 52 knees in 45 patients were first obtained clinically with goniometers and compared to radiographs of these patients' knees in full active flexion and extension. Four methods of plotting the range of motion on the radiographs were compared. The intra-class correlation coefficient (ICC) for inter-rater reliability using the goniometer was very high; ICC=0.90 in extension and 0.85 in flexion. The best ICC for radiographic measurement in extension was 0.86 indicating substantial agreement and best ICC in flexion was 0.95 (method 4). ICC for intra-rater reliability was 0.98 for extension and 0.99 for flexion on radiographic measurements. Measuring range of motion of the knee has never previously been validated in the literature. This study has allowed us to set up a “Virtual Knee Clinic,” combining postal questionnaires and radiographic measurements as a surrogate for knee function. We aim to maintain high quality patient surveillance following knee arthroplasty, reduce our new to follow-up ratios in line with Department of Health guidelines and improve patient satisfaction through reduced travel to hospital outpatients