Roentgen Stereophotogrammetric Analysis (RSA) is the gold standard for measuring implant micromotion thereby predicting implant loosening. Early migration has been associated with the risk of long-term clinical failure. We used
Introduction. Reverse Shoulder Arthroplasty (RSA) improves the mechanics of rotator cuff deficient shoulders. To optimize functional outcomes and minimize failures of the
Purpose. The purpose of this study was to examine the influence of weight-bearing on the measurement of in vivo wear of total knee replacements using model-based RSA at 1 and 2 years following surgery. Methods. Model-based RSA radiographs were collected for 106 patients who underwent primary TKR at a single institution. Supine
The philosophy of cemented total hip arthroplasty (THA) femoral components has become polarised. At one extreme are polished, collarless, tapered devices that are expected to subside; at the other extreme are roughened, non-tapered implants with a collar designed not to subside. Radiostereometric analysis (RSA) allows the accurate measurement of implant movement and has been extensively used for measurement of the in vivo migration of implants. The degree of migration as measured by
Introduction. In vitro studies showed that the anti-oxidative properties of vitamin E stabilize free radicals while retaining the mechanical strength of UHMWPE. The purpose was to evaluate vitamin E diffused polyethylene (VEPE) wear and stability of femoral components using
Reverse shoulder arthroplasty (RSA) was released into the United States market in 2004 for the indication of Rotator Cuff Tear Arthropathy. Since that time the indications have widened and now include massive rotator cuff tears that are not deemed to be surgically repairable. This diagnosis includes patients that are considered young in terms of shoulder replacement surgery. These patients do not have the radiographic changes of arthropathy, but most have undergone multiple surgical procedures in the past to attempt to repair the rotator cuff deficiency. These younger patients have a different post-op expectation than the patient with advanced arthropathy over the age of 70. The complication rate seen in this younger patient population is higher than seen in the older population undergoing
The Rizzoli Orthopaedic Institute has been involved in
Background:. The rising number of morbidly obese patients may have significant consequences on the health care system. It may alter the effectiveness, safety as well as cost of certain surgical procedures. Reverse shoulder arthroplasty (RSA) is rapidly gaining in popularity. We investigated the effect of morbid obesity on outcomes, complications, disposition and cost in morbidly obese patients undergoing
This study aimed to compare the early clinical results and stem subsidence between three consecutive series of revision hip replacement cases with femoral impaction bone grafting to evaluate the effects of developments in technique. In the original series 1 (n=23), bone graft was irradiated at 25kG. I n series 2 (n=12) non-irradiated double washed graft and long stems were used as required. In series 3 (n=21) modular tamps were used. Sensitive radiographic analysis techniques, EBRA and
The main purpose of the present study was to determine long-term implant fixation of 15 unicompartmental knee arthroplasty (UKAs) with an all-poly tibial component using Roentgen stereophotogrammetric analysis (RSA) at a mean 10-year follow-up. The secondary purpose was to investigate whether the progressive loss of implant's fixation correlates with a reduction in Knee society score (KSS). Fifteen non-consecutive patients with primary knee osteoarthritis received a UKA with an all-poly tibial component were assessed using KSS scores pre-operatively and post-operatively and
Purpose. The purpose of the study was to determine the rate of conversion from
Introduction. Osteolysis caused by wear of the ultrahigh molecular weight polyethylene (UHMWPE) often leads to failure. Cross-linking improves wear, but also produces residual free radicals that decrease oxidative stability. In vitro studies have shown that the anti-oxidative properties of vitamin E UHMWPE stabilize free radicals while retaining the physical and chemical properties of UHMWPE. The porous surface of the Regenerex™ shell was developed for improved bone in-growth fixation. The increased porosity of the Regenerex™ shell promotes early bony in-growth with the goal of greater long-term stability. The purpose of this study was to evaluate vitamin E infused polyethylene (VEPE) wear and stability of acetabular and femoral components using
Introduction. Stem geometry is known to influence the outcome in THA; however it is unknown whether the material properties, stiffness in particular can influence the stem stability and outcome. The aim of this study was to measure the influence of stem material properties on micromotion and migration using Roentgen Stereophotogrammetric Analysis (RSA) system. Methods. 41 patients were implanted with a collarless polished tapered (CPT) femoral stem (Zimmer, Warsaw, Indiana), which was made of either cobalt-chromium (CoCr) (n=21) or stainless steel (n=20).
Introduction. The most common method for accurate kinematic analysis of the knee arthroplasty uses bi-planar fluoroscopy and model-based RSA. The main challenge is to have access to reverse-engineered CAD models of the implant components, if not provided by the company, making this method impractical for a clinical study involving many types or sizes of implants. An alternative could be to reconstruct the 3D primitive features of the implant, such as cylindrical pegs, flat surfaces and circular boundaries, based on their 2D projections. This method was applied by Kaptein et al. (2006) for hip implants. However, despite its broad potential, it has not yet been applied for studying TKA kinematics. This study develops a methodology for feature-based
Reverse total shoulder arthroplasty was developed to address the treatment of patients with Cuff Tear Arthropathy. Despite of the clinical improvements seen with initial reverse shoulder replacements, several mechanical problems remain. Scapular notching has been reported between 24.5% and 96% of cases. Patients have also exhibited limited external rotation, either from impingement or slackening of remaining cuff musculature. Additionally, by medializing and moving the humerus distally, patients note a loss of the normal deltoid contour leading not only to cosmetic concerns, but possibly decreasing deltoid efficiency and creating a prosthesis with less inherent stability. Finally, although mechanical failure on the glenoid side initially was thought to be uncommon, various glenoid sided problems have been reported. Recognition of these problems led to clinical and basic science studies aimed at improving surgical technique and the design of reverse shoulder implants. During the last 10 years, our institution has been conducting biomechanical research examining the forces across the glenohumeral joint. Several different models have been created to replicate mechanical failures by integrating biomechanical information with our clinical investigations, including altering the position of the implant (tilt), the type of fixation of the implant (screw or peg), and glenoid-sided bone loss. We were able to address glenoid component failure (with initial rates of 10% in our clinical studies) by recommending locking screws to neutralize forces at the fixation site. These discoveries have reduced glenoid-sided fixation failures to less than 0.1%. In vitro kinematic function and factors that affect impingement free glenohumeral motion of reversed implants is another area of interest. The clinical relevance of impingement includes scapular-notching, pain from impingement, instability and excessive prosthetic wear. Several models that include motion in three different planes (flexion-extension, abduction-adduction and internal-external rotation) have been developed to study multiple prosthetic, technique and anatomic factors which can result from varying degrees of impingement. By integrating the results from these models into our clinical practice (e.g., selecting a more lateralized glenosphere, selecting a varus humeral component and inferiorly translating the glenoid component on the glenoid surface), we have been able to maintain low rates of notching (∼10% at 8 year follow-up). Finally, our current work involves development of a model that attempts to understand which factors might be influential in causing instability and stiffness. Thus, biomechanics research offers an excellent opportunity for interdisciplinary collaboration to solve complex clinical problems.
Is there an optimal way to place a glenoid in reverse total shoulder arthroplasty (RTSA)? Four of the six parameters that a surgeon can control in a RTSA involve the glenoid. The parameters are: inferior tilt, increased lateral or inferior offset and increased glenosphere diameter. The theoretical challenges are further complicated by the normal variations that exist in the bony anatomy of the scapula and pathological abnormalities prevalent in as many as 40% of patients undergoing RTSA. Over the last 5 years there has been a growing body of data and study on the biomechanics, clinical outcomes and complications of this prosthesis. What have we learned? How does a surgeon incorporate this into their practice? The goal of this talk is to briefly review the current status of biomechanics on the impact of glenosphere positioning and offset on the outcome of reverse arthroplasty.
Recent literature has shown that RSAs successfully improve pain and functionality, however variability in range of motion and high complication rates persist. Biomechanical studies suggest that tensioning of the deltoid, resulting from deltoid lengthening, improves range of motion by increasing the moment arm. This study aims to provide clinical significance for deltoid tensioning by comparing postoperative range of motion measurements with deltoid length for 93 patients. Deltoid length measurements were performed radiographically for 93 patients. Measurements were performed on both preoperative and postoperative x-rays in order to assess deltoid lengthening. The deltoid length was measured as the distance from the infeolateral tip of the acromion to the deltoid tuberosity on the humerus for both pre- and post- x-rays. For preoperative center of rotation measurements, the distance extended from the center of humeral head (estimated as radius of best fit circle) to deltoid length line. For postoperative measurements, the distance was from the center of glenosphere implant to deltoid length line. Forward flexion and external rotation was measured for all patients.Introduction
Methods
4 years of follow-up study on 27 patients who had biological reverse total shoulder replacement 12 patients who had Bio-RSA by using Tonier Aequalis reversed implants with bone graft extracted from the head of humerus before humeral shaft was prepared. The average age of this group of patients is 77. The average pre-operative shoulder abduction on the affected side is 52 degrees and forward flexion of 90 degrees. Indication for surgery in all those cases are due to cuff tear. The average post-operative abduction is 90 degrees and forward flexion of 97 degrees. The average follow-up period is 9 months with a range from 4 to 18 months. Two patients from this group failed to make an improvement in the range of their shoulder movements post-operatively. 15 underwent Bio-RSA by using Delta XTEND reverse shoulder system without bone graft. The average age of this group of patients is 73. The average pre-operative shoulder abduction is 35 degrees and forward flexion of 37 degrees. Indication for surgery again in most of the cases is due to cuff tear, except one case was due to proximal humeral fracture. The average post-operative abduction is 96 degrees and forward flexion of 101 degrees. The average follow-up period is 19 months with a range of 4–42 months. Only one patient failed to make an improvement post-operatively. This is the patient who had Bio-RSA due to a proximal humeral fracture. 6 patients out of this group also had previous resurfacing which has failed in comparison to the bone graft group which none had previous resurfacing surgery. Overall, the average post-operative range of movements in both groups is not very significant different. Bio-RSA without bone graft seems to make a larger improvement when compared with per-operative range of motion. Howver, whether a much longer follow-up period and younger patients have an impact on the outcome is debatable.Conclusion
The mobile-bearing variant of a single-radius design is assumed to provide more freedom of motion compared to the fixed-bearing variant because the insert does not restrict the natural movements of the femoral component. This would reduce the contact stresses and wear which in turn may have a positive effect on the fixation of the prosthesis to the bone and thereby decreases the risk for loosening. The aim of this prospective randomized study was to evaluate early migration of the tibial component and kinematics of a mobile-bearing and fixed-bearing total knee prosthesis of the same single-radius design. According to a prospective randomized protocol 20 Triathlon single-radius posterior- stabilized knee prostheses were implanted (9 mobile-bearing and 11 fixed-bearing). Fluoroscopy and roentgen stereophotogrammetric analysis were performed 6 and 12 months post-operatively. The 1 year post-operative roentgen stereophotogrammetric analysis results showed considerable early migrations in 3 mobile-bearing patients and 1 fixed-bearing patient. The range of knee flexion was the same for the mobile-bearing and fixed- bearing group. The mobile insert was following the femoral component during motion. This study showed no apparent distinction in early migration and kinematics between mobile-bearing and fixed-bearing single-radius total knee prostheses. Des- pite the mobile insert was following the femoral component during motion, and therefore performed as intended, no kinematic advantages of the mobile-bearing total knee prosthesis were seen. It is concluded that a mobile insert in single-radius total knee prostheses is redundant and will not lead to additional benefits.
Within the reconstruction of unicondylar femoral bone defects with morselized bone grafts in revision total knee arthroplasty (TKA), a stem extension appears to be critical to obtain adequate mechanical stability. Whether the stability is still secured by this reconstruction technique in bicondylar defects has not been assessed. Long, rigid stem extensions have been advocated to maximize the stability in revision TKAs. The disadvantage of relatively stiff stem extensions is that bone resorption is promoted due to stress shielding. Therefore, we developed a relatively thin intramedullary stem which allowed for axial sliding movements of the articulating part relative to the intramedullary stem. The hypothesis behind the design is that compressive contact forces are directly transmitted to the distal femoral bone, whereas adequate stability is provided by the sliding intramedullary stem. A prototype was made of this new knee revision design and applied to the reconstruction of uncontained bicondylar femoral bone defects. Five synthetic distal femora with a bicondylar defect were reconstructed with impacted bone grafting (IBG) and this new knee revision design. A custom-made screw connection between the stem and the intercondylar box was designed to lock or initiate the sliding mechanism, another screw (dis)connected the stem. A cyclically axial load of 500 N was applied to the prosthetic condyles to assess the stability of the reconstruction. Radiostereometry was used to determine the migrations of the femoral component with a rigidly connected stem, a sliding stem and no stem extension.Introduction
Materials and Methods