Introduction. Therapeutic exploitation of MSCs in orthopaedics has been tempered by their scarcity within ‘gold-standard’ iliac crest bone marrow aspirate (ICBMA) and the resulting need to expand cells in vitro. This is time-consuming, expensive and results in cells with a reduced differentiation capacity. [Banfi 2000] The
The need for an artificial scaffold in very large bone defects is clear, not only to limit the risk of graft harvesting, but also to improve clinical success. The use of custom osteoconductive scaffolds made from biodegradable polyester and ceramics can be a valuable patient friendly option, especially in case of a concomitant infection. Multiple types of scaffolds for the Masquelet procedure (MP) are available, however these frequently demonstrate central graft involution when defects exceed a certain size and the complication rates remains high. This paper describes three infected tibial defect nonunions with a segmental defect over ten centimeters long treated with a customized 3D printed polycaprolactone-tricalcium phosphate (PCL-TCP) cage in combination with biological adjuncts. Three male patients, between the age of 37 and 47, were treated for an infected tibial defect nonunion after sustaining Gustilo grade 3 open fractures. All had a segmental midshaft bone defect of more than ten centimeters (range 11–15cm). First stage MPs consisted of extensive debridement, external fixation and placement of anterior lateral thigh flaps (ALT). Positive cultures were obtained from all patients during this first stage, that were treated with specific systemic antibiotics during 12 weeks. The second stage MP was carried out at least two months after the first stage. CT scans were obtained after the first stage to manufacture defect-specific cages. In the final procedure a custom 3D printed PCL-TCP cage (Osteopore, Singapore) was placed in the defect in combination with biological adjuncts (BMAC,
Introduction. The BOAST (British Orthopaedic Association Standards for Trauma) guidelines do advise that open pilon fractures amongst other open lower limb fractures need to be treated at a specialist centre with Orthoplastic care. The purpose of this study was to determine clinical outcomes in patients with open pilon fractures treated as per BOAST guidelines including relatively aggressive bone debridement. Methods. A retrospective analysis of a single surgeon series of open pilon fractures treated between 2014 and 2019 was conducted. Injuries were graded according to the Gustillo-Anderson classification and all patients were included for the assessment of the rate of infection and fracture healing. Functional outcome assessment was performed in all patients according to the American Orthopedic Foot and Ankle Score (AOFAS) at 6 months after definitive surgery. Initial wound with bone debridement and application of a spanning external fixator was performed within an average of 13.5 (Range: 3–24) hours. Fixation with FWF (Fine Wire Frame) was performed when the wound was healed, with the mean time from primary surgery to application of FWF being 24.5 (Range: 7–60) days. Results. There was a total of 20 patients including 16 males and 4 females. The mean age was 50.45 (Range: 16–88) years. Follow-up was for an average of 23.2 (Range: 5–51) months. There were 3 patients with Gustilo Type I injuries, 6 with Type II, 4 Type with type IIIa and 7 with Type IIIb injuries. Average time to bone union was 9.3 (Range: 2–18) months. The mean AOFAS score was 66 (Range: 15–97) points. TSF was used on 18 patients, while 2 patients had an Ilizarov frame. A corticotomy was performed on 4 patients with critical bone defect post debridement, while 2 patients had Stimulan beads with antibiotics. There was 1 case (5%) of deep infection and 9 cases (45%) of superficial infection. There were also 2 cases (10%) of non-union which required bone grafting from their femur using a
This study investigated the quality and quantity of healing of a bone defect following intramedullary reaming undertaken by two fundamentally different systems; conventional, using non-irrigated, multiple passes; or suction/irrigation, using one pass. The result of a measured re-implantation of the product of reaming was examined in one additional group. We used 24 Swiss mountain sheep with a mean tibial medullary canal diameter between 8 mm and 9 mm. An 8 mm ‘napkin ring’ defect was created at the mid-diaphysis. The wound was either surgically closed or occluded. The medullary cavity was then reamed to 11 mm. The Reamer/Irrigator/Aspirator (RIA) System was used for the reaming procedure in groups A (RIA and autofilling) and B (RIA, collected reamings filled up), whereas reaming in group C (Synream and autofilling) was performed with the Synream System. The defect was allowed to auto-fill with reamings in groups A and C, but in group B, the defect was surgically filled with collected reamings. The tibia was then stabilised with a solid locking Unreamed Humerus Nail (UHN), 9.5 mm in diameter. The animals were killed after six weeks. After the implants were removed, measurements were taken to assess the stiffness, strength and callus formation at the site of the defect. There was no significant difference between healing after conventional reaming or suction/irrigation reaming. A significant improvement in the quality of the callus was demonstrated by surgically placing captured reamings into the defect using a graft harvesting system attached to the aspirator device. This was confirmed by biomechanical testing of stiffness and strength. This study suggests it could be beneficial to fill cortical defects with reaming particles in clinical practice, if feasible.