Advertisement for orthosearch.org.uk
Results 1 - 20 of 111
Results per page:
Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_8 | Pages 124 - 124
11 Apr 2023
Woodford S Robinson D Lee P Abduo J Dimitroulis G Ackland D
Full Access

Total temporomandibular joint (TMJ) replacements reduce pain and improve quality of life in patients suffering from end-stage TMJ disorders, such as osteoarthritis and trauma. Jaw kinematics measurements following TMJ arthroplasty provide a basis for evaluating implant performance and jaw function. The aim of this study is to provide the first measurements of three-dimensional kinematics of the jaw in patients following unilateral and bilateral prosthetic TMJ surgeries. Jaw motion tracking experiments were performed on 7 healthy control participants, 3 unilateral and 1 bilateral TMJ replacement patients. Custom-made mouthpieces were manufactured for each participant's mandibular and maxillary teeth, with each supporting three retroreflective markers anterior to the participant's lip line. Participants performed 15 trials each of maximum jaw opening, lateral and protrusive movements. Marker trajectories were simultaneously measured using an optoelectronic tracking system. Laser scans taken of each dental plate, together with CT scans of each patient, were used to register the plate position to each participant's jaw geometry, allowing 3D condylar motion to be quantified from the marker trajectories. The maximum mouth opening capacity of joint replacement patients was comparable to healthy controls with average incisal inferior translations of 37.5mm, 38.4mm and 33.6mm for the controls, unilateral and bilateral joint replacement patients respectively. During mouth opening the maximum anterior translation of prosthetic condyles was 2.4mm, compared to 10.6mm for controls. Prosthetic condyles had limited anterior motion compared to natural condyles, in unilateral patients this resulted in asymmetric opening and protrusive movements and the capacity to laterally move their jaw towards their pathological side only. For the bilateral patient, protrusive and lateral jaw movement capacity was minimal. Total TMJ replacement surgery facilitates normal mouth opening capacity and lateral and inferior condylar movements but limits anterior condylar motion. This study provides future direction for TMJ implant design


Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_14 | Pages 14 - 14
1 Dec 2022
Ghezzi D Baldini N Graziani G Cappelletti M
Full Access

Prosthetic joint infections represent complications connected to the implantation of biomedical devices. Bacterial biofilm is one of the main issues causing infections from contaminated orthopaedic prostheses. Biofilm is a structured community of microbial cells that are firmly attached to a surface and have unique metabolic and physiological attributes that induce improved resistance to environmental stresses including toxic compounds like antimicrobial molecules (e.g. antibiotics). Therefore, there is increasing need to develop methods/treatments exerting antibacterial activities not only against planktonic (suspended) cells but also against adherent cells of pathogenic microorganisms forming biofilms. In this context, metal-based coatings with antibacterial activities have been widely investigated and used in the clinical practice. However, traditional coatings exhibit some drawbacks related to the insufficient adhesion to the substrate, scarce uniformity and scarce control over the toxic metal release reducing the biofilm formation prevention efficacy. Additionally, standardized and systematic approaches to test antibacterial activity of newly developed coatings are still missing, while standard microbiological tests (e.g. soft-agar assays) are typically used that are limited in terms of simultaneous conditions that can be tested, potentially leading to scarce reproducibility and reliability of the results.

In this work, we combined the Calgary Biofilm Device (CBD) as a device for high-throughput screening, together with a novel plasma-assisted technique named Ionized Jet Deposition (IJD), to generate and test new generation of nanostructured silver- and zinc-based films as coatings for biomedical devices with antibacterial and antibiofilm properties. During the experiments we tested both planktonic and biofilm growth of four bacterial strains, two gram-positive and two gram-negative bacterial strains, i.e. Staphylococcus aureus ATCC 6538P, Enterococcus faecalis DP1122 and Escherichia coli ATCC 8739 and Pseudomonas aeruginosa PAO1, respectively. The use of CBD that had the only wells covered with the metal coatings while the biofilm supports (pegs) were not sheltered allowed to selectively define the toxic effect of the metal release (from the coating) against biofilm development in addition to the toxic activity exerted by contact killing mechanism (on biofilms formed on the coating). The results indicated that the antibacterial and antibiofilm effects of the metal coatings was at least partly gram staining dependent. Indeed, Gram negative bacterial strains showed high sensitivity toward silver in both planktonic growth and biofilm formation, whereas zinc coatings provided a significant inhibitory activity against Gram positive bacterial strains. Furthermore, the coatings showed the maximal activity against biofilms directly forming on them, although, Zn coating showed a strong effect against biofilms of gram-positive bacteria also formed on uncoated pegs.

We conclude that the metal-based coatings newly developed and screened in this work are efficient against bacterial growth and adherence opening possible future applications for orthopedic protheses manufacturing.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_7 | Pages 110 - 110
4 Apr 2023
Ding Y Li S Li C Chen Z Wu C
Full Access

Total joint replacement (TJR) was one of the most revolutionary breakthroughs in joint surgery. The majority studies had shown that most implants could last about 25 years, anyway, there is still variation in the longevity of implants. In US, for all the hip revisions from 2012 to 2017 in the United States, 12.0% of the patients were diagnosed as aseptic loosening. Variable studies have showed that any factor that could cause a systemic or partial bone loss, might be the risk of periprosthetic osteolysis and aseptic loosening.

Breast cancer is the most frequent malignancy in women, more than 2.1 million women were newly diagnosed with breast cancer, 626,679 women with breast cancer died in 2018. It's been reported that the mean incidence of THA was 0.29% for medicare population with breast cancer in USA, of which the incidence was 3.46% in Norwegian. However, the effects of breast cancer chemotherapy and hormonotherapy, such as aromatase inhibitors (AI), significantly increased the risk of osteoporosis, and had been proved to become a great threat to hip implants survival.

In this case, a 46-year-old female undertook chemotherapy and hormonotherapy of breast cancer 3 years after her primary THA, was diagnosed with aseptic loosening of the hip prosthesis. Her treatment was summarized and analyzed.

Breast cancer chemotherapy and hormonotherapy might be a threat to the stability of THA prosthesis. More attention should be paid when a THA paitent occurred with breast cancer. More studies about the effect of breast cancer treatments on skeleton are required.


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_13 | Pages 71 - 71
1 Mar 2013
Lancashire H Al Ajam Y Pendegrass C Blunn G
Full Access

Introduction. Bone-anchored devices have been used as skin-crossing conduits to record neuromuscular signals in sedated animals. Long-term recordings from cognisant subjects must be assessed. Hypothesis A bone-anchored device is suitable as a conduit for epimysial EMG (Electromyogram) recordings and is reliable in the long-term. Methods. The bone-anchored device was implanted into the medial aspect of an ovine tibia (n=1), and the epimysial electrode was sutured onto the peroneus tertius muscle. Epimysial and Surface EMG signals were recorded for 12 weeks. Results. The signal-to-noise ratio (SNR) was greater for epimysial (5.1) than surface electrodes (1.6). SNR deteriorated near the end of 12 weeks, due to debris in an external connector. Discussion and Conclusion. Implanted electrodes improve SNR, selectivity, signal reliability and reduce cross-talk. Bone-anchored devices allow hard-wired connections without infection or fatigue at the skin-interface. Hard-wired connections will enable more advanced prosthetic control. This is the first known use of a bone-anchored device to acquire physiological signals from a cognisant subject


The Journal of Bone & Joint Surgery British Volume
Vol. 80-B, Issue 3 | Pages 531 - 539
1 May 1998
Goodman SB Huie P Song Y Schurman D Maloney W Woolson S Sibley R

The tissues surrounding 65 cemented and 36 cementless total joint replacements undergoing revision were characterised for cell types by immunohistochemistry and for cytokine expression by in situ hybridisation. We identified three distinct groups of revised implants: loose implants with ballooning radiological osteolysis, loose implants without osteolysis, and well-fixed implants. In the cemented series, osteolysis was associated with increased numbers of macrophages (p = 0.0006), T-lymphocyte subgroups (p = 0.03) and IL-1 (p = 0.02) and IL-6 (p = 0.0001) expression, and in the cementless series with increased numbers of T-lymphocyte subgroups (p = 0.005) and increased TNFα expression (p = 0.04). For cemented implants, the histological, histochemical and cytokine profiles of the interface correlated with the clinical and radiological grade of loosening and osteolysis. Our findings suggest that there are different biological mechanisms of loosening and osteolysis for cemented and cementless implants. T-lymphocyte modulation of macrophage function may be an important interaction at prosthetic interfaces


The Journal of Bone & Joint Surgery British Volume
Vol. 79-B, Issue 5 | Pages 816 - 819
1 Sep 1997
An YH Bradley J Powers DL Friedman RJ

We evaluated the effects of a serum protein coating on prosthetic infection in 29 adult male rabbits divided into three groups: control, albumin-coated and uncoated. We used 34 grit-blasted, commercially pure titanium implants. Eleven were coated with cross-linked albumin. All the implants were exposed to a suspension of Staphylococcus epidermidis before implantation. Our findings showed that albumin-coated implants had a much lower infection rate (27%) than the uncoated implants (62%). This may be a useful method of reducing the infection of prostheses


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_4 | Pages 56 - 56
1 Mar 2021
Moore AJ Palmer C Mallon C Gooberman-Hill R Whitehouse MR Blom AW
Full Access

Prosthetic joint infection (PJI) is an uncommon but serious complication of hip replacement. Over 1,000 operations are performed annually in the United Kingdom for PJI following hip replacement, using either one- or two-stage revision arthroplasty. It is unclear which is preferred by patients and which has the best long-term outcome. This qualitative study aims to describe patient experiences of treatment and recovery following one- and two-stage revision arthroplasty for PJI within the context of a pragmatic randomised controlled trial comparing these two approaches. Semi-structured interviews were conducted with 32 patients undergoing one- or two-stage revision treatment for PJI as part of a UK multi-centre randomised controlled trial. Patients were recruited from 12 participating National Health Service (NHS) Orthopaedic Departments and were interviewed 2–4 months after their first revision surgery and again approximately 18 months later. Final sample size was justified on the basis of thematic saturation. All patients consented to the interview being audio-recorded, transcribed, anonymised and analysed using an inductive thematic approach. Ethical approval was provided by NRES Committee South-West Frenchay, 14/SW/116. Patients in both the one- and two-stage treatment groups described prolonged hospital stays, with burdensome antibiotics and brief physiotherapy treatment. However, following discharge home and during recovery, participants undergoing two-stage revision with an ‘empty hip' or with a spacer reported being physically restricted in almost every aspect of their daily life, resulting in inactivity and confinement to home. Mobility aids were not sufficiently available through the health service for these patients. A key difference is that those with a spacer reported more pain than those without. Approximately one year following their second-stage revision, participants described being more independent and active, but two directly attributed muscle weakness to the lengthy period without a hip and described resulting falls or dislocations that had complicated their recovery. In contrast, those undergoing one-stage revision and CUMARS appeared to be more alike, reporting better mobility, functionality and independence, although still limited. Participants in these groups also reported minimal or no pain following their revision. A key difference between CUMARS and one-stage revision was the uncertainty of whether a second operation was necessary, which participants described as “hanging over them”, while those in the two-stage empty hip or spacer group described a more positive anticipation of a second definitive operation as it marked an end to what was described as a detachment from life. Our findings highlight the differences between patient experiences of recovery following revision arthroplasty, and how this is influenced by the surgical approach and presence or lack of spacers. An understanding of lived experiences following one- and two-stage surgical interventions will complement knowledge about the clinical effectiveness of these different types of revision surgery.


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_3 | Pages 59 - 59
1 Apr 2018
Aguilera-Correa JJ Conde A Arenas MA De-Damborenea JJ Marin M Esteban J
Full Access

Prosthetic joint infections (PJI) occur infrequently, but they represent the most devastating complication with high morbidity and substantial cost. Staphylococcus aureus and coagulase-negative S. epidermidis are the most commonly infecting agents associated with PJI. Nowadays, Gram-negative species like Escherichia coli and Pseudomonas aeruginosa are gaining relevance.

The use of TiO2 conical nanotubular doped with fluorine and phosphorous (FP-cNT) surfaces is an interesting approach to prevent surface bacterial colonization during surgery and favouring the osseointegration. Despite of there are serum markers related with PJI, to date there is described no biomaterial-related marker that allows detecting PJI. Here we describe the adherence and the bactericidal effect of FP-cNT and its capacity of marking the non-fermenting bacteria that have been in contact with it by Al. This metal is delivered by FP-cNT in non-toxic concentrations (between 25 and 29 ng/mL).

F-P-cNT layers on Ti6Al4V alloy were produced as described previously by our group. Ti6Al4V chemical polishing (CP) samples without nanostructure were used as control and produced as described previously.

S. aureus 15981, S. epidermidis ATCC 35984, E. coli ATCC 25922, and P. aeruginosa ATCC 27853 strains adherence study was performed using the protocol described by Kinnari et al. in 0.9% NaCl sterile saline with a 120 min incubation. After incubation, the samples were stained with LIVE/DEAD BacLight Bacterial Viability Kit. Proportion of live and dead bacteria was calculated and studied by using ImageJ software. The experiments were performed in triplicate. The aluminum concentration was estimated in the supernatant after incubation and in the 0.22 µm filtered supernatant by atomic absorption in graphite furnace.

The statistical data were analyzed by nonparametric Kruskal-Walis test and by pairwise comparisons using the nonparametric unilateral Wilcoxon test with a level of statistical significance of p<0.05. The values are cited as medians.

Our results show that the bacterial adherence of all tested species significantly decreased on FP-cNT compared to CP except P. aeruginosa ATCC 27853: 19.8% for S. aureus 15981, 45.3% for S. epidermidis ATCC 35984 and 8.1% for E. coli ATCC 25922. The bacterial viability decreased 2-fold for S. aureus 15981, and 5-fold for S. epidemidis ATCC 35984, but increased 95% for P. aeruginosa ATCC 27853 and there no was variation for E. coli ATCC 25922 on FP-cNT compared to CP. Only supernatant P. aeruginosa ATCC 27853 shows significant Al detection after 120 min incubation (p<0.05).

In summary, F-P cNT is a promising biomaterial that besides favoring osseointegration and potential usefulness as drug carrier, present bactericidal, non-stick ability (at least for staphylococci and E. coli) and is able to mark P. aeruginosa with Al, which could be potentially monitored in serum and urine in patients with PJI.


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_2 | Pages 61 - 61
1 Jan 2017
Lucente L Palmesi A Longo D Papalia M
Full Access

Introduction

seeking full compliance with the Tissue Sparing Surgery principles, we introduced this new surgical approach to the coxa-femoral joint via the medial inguinal region.

Patients/Materials and Methods

we performed total hip arthroplasty on 20 patients suffering from hip arthritis while 15 cases of medial femoral fracture received hemiarthroplasty with bipolar prostheses implants.


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_11 | Pages 214 - 214
1 Jul 2014
McIff T Colbert K Boyer A Goodyear A Mar D
Full Access

Summary Statement

A porcine model using Yucatan minipigs was found to be very promising for the investigation of healing around transcutaneous osseointegrated implants. Pigs demonstrated surprising agility and adaptability including the ability to ambulate on three legs during the immediate postoperative period.

Introduction

Previous non weight-bearing and weight-bearing caprine, canine and ovine models have evaluated design, material, and biological coating variations in an attempt to improve the wound healing and skin-implant seal around transcutaneous osseointegrated implants. Although these models have primarily been used as a window into the application of transcutaneous osseointegrated implants in humans, some important model characteristics affecting wound healing and infection have been missing including: 1) replication of the physiological tissue response, and 2) availability of a transcutaneous site with sufficient soft tissue coverage. Pig skin, like human, is relatively hairless, tightly attached to the subcutaneous tissue, vascularised by a cutaneous blood supply, and healed by means of epithelialization. Swine have been extensively utilised for superficial and deep wound healing studies and can offer ample soft tissue coverage following a lower limb amputation. Development of a porcine model is important for continued understanding and improvement of weight-bearing transcutaneous osseointegration.


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_3 | Pages 8 - 8
1 Apr 2018
Marques E Fawsitt C Thom H Hunt LP Nemes S Lopez-Lopez J Beswick A Burston A Higgins JP Hollingworth W Welton NJ Rolfson O Garellick G Blom AW
Full Access

Background

Prosthetic implants used in primary total hip replacements have a range of bearing surface combinations (metal-on-polyethylene, ceramic-on-polyethylene, ceramic-on-ceramic, metal-on-metal); head sizes (small <36mm, large 36mm+); and fixation techniques (cemented, uncemented, hybrid, reverse hybrid), which influence prosthesis survival, patient quality of life, and healthcare costs. This study compared the lifetime cost-effectiveness of implants to determine the optimal choice for patients of different age and gender profiles.

Methods

In an economic decision Markov model, the probability that patients required one or more revision surgeries was estimated from analyses of UK and Swedish hip joint registries, for males and females aged <55, 55–64, 65–74, 75–84, and 85+ years. Implant and healthcare costs were estimated from hospital procurement prices, national tariffs, and the literature. Quality-adjusted life years were calculated using utility estimates, taken from Patient-Reported Outcome Measures data for hip procedures in the UK.


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXVIII | Pages 39 - 39
1 Jun 2012
Clarke J Deakin A Picard F Riches P
Full Access

Knee alignment is a fundamental measurement in the assessment, monitoring and surgical management of patients with OA. In spite of extensive research into the consequences of malalignment, there is a lack of data regarding the potential variation between supine and standing (functional) conditions. The purpose of this study was to explore this relationship in asymptomatic, osteoarthritic and prosthetic knees. Our hypothesis was that the change in alignment of these three groups would be different.

Infrared position capture was used to assess knee alignment for 30 asymptomatic controls and 31 patients with OA, before and after TKA. Coronal and sagittal mechanical femorotibial (MFT) angles in extension (negative values varus/hyperextension) were measured supine and in bi-pedal stance and changes analysed using a paired t-test. To quantify this change in 3D, vector plots of ankle centre displacement relative to the knee centre were produced.

Alignment in both planes changed significantly from supine to standing for all three groups, most frequently towards relative varus and extension. In the coronal plane, the mean±SD(°) of the supine/standing MFT angles was 0.1±2.5/−1.1±3.7 for asymptomatic (p=0.001), −2.5±5.7/−3.6±6.0 for osteoarthritic (p=0.009) and −0.7±1.4/ −2.5±2.0 for prosthetic knees (p<0.001). In the sagittal plane, the mean±SD(°) of the supine/standing MFT angles was −1.7±3.3/−5.5±4.9 for asymptomatic (p<0.001), 7.7±7.1/1.8±7.7 for osteoarthritic (p<0.001) and 6.8±5.1/1.4±7.6 for prosthetic knees (p<0.001). The vector plots showed that the trend of relative varus and extension in stance was similar in overall magnitude and direction between the groups.

The similarities between each group did not support our hypothesis. The consistent kinematic pattern for different knee types suggests that soft tissue restraints rather than underlying joint deformity may be more influential in dynamic control of alignment from lying to standing. This potential change should be considered when positioning TKA components on supine limbs as post-operative functional alignment may be different.


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_13 | Pages 106 - 106
1 Nov 2021
Franceschetti E De Angelis D'Ossat G Palumbo A Paciotti M Franceschi F Papalia R
Full Access

Introduction and Objective. TKA have shown both excellent long-term survival rate and symptoms and knee function improvement. Despite the good results, the literature reports dissatisfaction rates around 20%. This rate of dissatisfaction could be due to the overstuff that mechanically aligned prostheses could produce during the range of motion. Either size discrepancy between bone resection and prosthetic component and constitutional mechanical tibiofemoral alignment (MTFA) alteration might increase soft tissue tension within the joint, inducing pain and functional limitation. Materials and Methods. Total knee arthroplasties performed between July 2019 and September 2020 were examined and then divided into two groups based on the presence (Group A) or absence (Group B) of patellofemoral overstuff, defined as a thickness difference of more than 2 mm between chosen component and bone resection performed, taking into account at least one of the following: femoral medial and lateral condyle, medial or lateral trochlea and patella. Based on pre and post-operative MTFA measurements, Group A was further divided into two subgroups whether the considered alignment was modified or not. Patients were assessed pre-operatively and at 6 months post-op using the Knee Society Score (KSS), Oxford Knee Score (OKS), Forgotten Joint Score (FJS), Visual Analogue Scale (VAS) and Range of Motion (ROM). Results. One hundred total knee arthroplasties were included in the present study, 69 in Group A and 31 in group B. Mean age and BMI of patients was respectively 71 and 29.2. The greatest percentage of Patellofemoral Overstuff was found at the distal lateral femoral condyle. OKS, KSS functional score, and FJS were statistically significant higher in patients without Patellofemoral Overstuff. Therefore, Group A patients with a non-modified MTFA demonstrated statistically significant better KSS, ROM and FJS. Conclusions. Patellofemoral Overstuff decrease post-operative clinical scores in patients treated with TKA. The conventional mechanically aligned positioning of TKA components might be the primary cause of prosthetic overstuffing leading to worsened clinical results. Level of evidence: III; Prospective Cohort Observational study;


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_2 | Pages 9 - 9
2 Jan 2024
Ma H Lei B Zhang Y
Full Access

3D Printed polyether-ether-ketone (PEEK) has gained widespread use in clinical practice due to its excellent biocompatibility, biomechanical compatibility, and personalization. However, pre-printed PEEK implants are not without their flaws, including bioinert, optimization distortion of 3D printing digital model and prosthetic mismatching. Recent advancements in mechanical processing technology have made it possible to print bone implants with PEEK fused deposition, allowing for the construction of mechanically adaptable implants. In this study, we aimed to synthesize silanized polycitrate (PCS) via thermal polymerization and in situ graft it to PEEK surface to construct an elastomer coating for 3D printed PEEK implants (PEEK-PCS). This incorporation of PCS allows the implant to exhibit adaptive space filling ability and stress dispersal. In vivo and in vitro results, PEEK-PCS exhibited exceptional osseointegration and osteogenesis properties along with macrophage M2 phenotypic polarization, inflammatory factors reducing, promotion of osteogenic differentiation in bone marrow mesenchymal stem cells (BMSCs). Additionally, PEEK-PCS displays good autofluorescence properties in vitro and in vivo, with stable fluorescence for 14 days, suggesting potential bioimaging applications. The study confirms that PEEK in situ grafting with thermo-polymerized PCS elastomers is a viable approach for creating multifunctional (bone defect adaptation, bioimaging, immune regulation, and osseointegration) implants for bone tissue engineering


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_2 | Pages 120 - 120
2 Jan 2024
Camera A Biggi S Capuzzo A Cattaneo G Tedino R Bolognesi G
Full Access

Fractures of the prosthetic components after total knee arthroplasty (TKA) are rare but dangerous complications, sometimes difficult to diagnose and to manage. Aim of this study is to evaluate the incidence of component breakage and its treatment in our single institution's experience. We retrospectively review our institution registry. From 605 revision knee arthroplasties since 2000 to 2018, we found 8 cases of component breakage, of these 3 belonged to UKA, and 5 belonged to TKA. The UKA fractures were all on the metal tibial component; while 4 TKA fractures were ascribed to the liner (2 Posterior-Stabilized designs and 2 constrained designs) and only one case was on the femoral component. For every patient a revision procedure was performed, in two cases a tibial tubercle osteotomy was performed, while in one case (where the fracture was of the post cam) an arthroscopy was performed prior to the arthrotomy. All of the UKA fractures were treated with a standard revision implant. As regard the TKA, 2 liner fractures were treated with the only liner exchange, while the other 2 liner fractures and the fracture of the metallic component were treated with total knee revision. No intra- and post-operative complications were found. Component breakage after TKA is a serious complication. Its treatment, always surgical, can hide pitfalls, especially if the timing is not correct; indeed apart from the revision of one or more components, the surgeons must address any issues of management of bone defect and ligamentous stability


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_8 | Pages 36 - 36
11 Apr 2023
Boyce S Le Maitre C Smith T Nichol T
Full Access

An increasing elderly population means joint replacement surgery numbers are projected to increase, with associated complications such as periprosthetic joint infections (PJI) also rising. PJI are particularly challenging due to antimicrobial resistant biofilm development on implant surfaces and surrounding tissues, with treatment typically involving invasive surgeries and systemic antibiotic delivery. Consequently, functionalisation of implant surfaces to prevent biofilm formation is a major research focus. This study characterises clinically relevant antimicrobials including gentamicin, clindamycin, daptomycin, vancomycin and caspofungin within a silica-based, biodegradable sol-gel coating for prosthetic devices. Antimicrobial activity of the coatings against clinically relevant microorganisms was assessed via disc diffusion assays, broth microdilution culture methods and the MBEC assay used to determine anti-biofilm activity. Human and bovine cells were cultured in presence of antimicrobial sol-gel to determine cytotoxicity using Alamar blue and antibiotic release was measured by LC-MS. Biodegradability in physiological conditions was assayed by FT-IR, ICP-MS and measuring mass change. Effect of degradation products on osteogenesis were studied by culturing mesenchymal stem cells in the presence of media in which sol-gel samples had been immersed. Antimicrobial-loaded coatings showed strong activity against a wide range of clinically relevant bacterial and fungal pathogens with no loss of activity from antibiotic alone. The sol-gel coating demonstrated controlled release of antimicrobials and initial sol-gel coatings showed no loss of viability on MSCs with gentamicin containing coatings. Current work is underway investigating cytotoxicity of sol-gel compositions against MG-63 cells and primary osteoblasts. This research forms part of an extended study into a promising antimicrobial delivery strategy to prevent PJI. The implant coating has potential to advance PJI infection prevention, reducing future burden upon healthcare costs and patient wellbeing


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_1 | Pages 23 - 23
2 Jan 2024
Ciatti C Quattrini F Asti C Maniscalco P
Full Access

Previous scientific studies have highlighted how coupling is an important element affecting total hip arthroplasty's survival. This study aims to evaluate whether metal-on-metal (MOM) coupling could be a statistically significant risk factor. The data from the regional joint registry (Registro dell'Impiantologia Protesica Ortopedica, RIPO) was used for analysis. The data collection accuracy of this registry was 97.2% in 2017. We retrospective evaluate all MOM total hip arthroplasties (THAs) implanted in our department between January 01st 2000 and December 31st 2011. We used a control group composed by all other prosthesis implanted in our Department in the same time lapse. We registered 660 MOM THAs. Mean age of patients was 66.9 years. 603 patients have a >36mm head, while 78 a <36 mm one. Neck modularity was present in half of patients. 676 implants were cementless. We registered 69 revisions, especially due to aseptic mobilization (16 THAs), implant breakage (9 THAs) and periprosthetic fracture (6 THAs). The MOM THAs overall Kaplan-Meier survival rate was 87.2 at 15 years, and the difference between MOM THAs and other implants two curves is statistically significant (p<0.05). Male sex is a significant risk factors. Further evaluations are in progress to establish the presence of any additional risk factors. We think weight and/or BMI may be included in this category. Our study confirms the data currently present in the literature regarding a lower survival of metal-on-metal hip prostheses. The male sex is a statistically significant risk factor (p<0.05), while age, head size and modularity of the prosthetic neck are not statistically significant (p>0.05). Any new finds will be presented at the congress venue


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_7 | Pages 20 - 20
4 Apr 2023
Gori M Giannitelli S Vadalà G Papalia R Zollo L Rainer A Denaro V
Full Access

Intraneural electrodes can be harnessed to control neural prosthetic devices in human amputees. However, in chronic implants we witness a gradual loss of device functionality and electrode isolation due to a nonspecific inflammatory response to the implanted material, called foreign body reaction (FBR). FBR may eventually lead to a fibrous encapsulation of the electrode surface. Poly(ethylene glycol) (PEG) is one of the most common low-fouling materials used to coat and protect electrode surfaces. Yet, PEG can easily undergo encapsulation and oxidative damage in long-term in vivo applications. Poly(sulfobetaine methacrylate) - poly(SBMA) - zwitterionic hydrogels may represent more promising alternatives to minimize the FBR due to their ultra-low fouling features. Here, we tested and compared the poly(SBMA) zwitterionic hydrogel coating with the PEG coating in reducing adhesion and activation of pro-inflammatory and pro-fibrotic cells to polyimide surfaces, which are early hallmarks of FBR. We aimed to coat polyimide surfaces with a hydrogel thin film and analysed the release of a model drug from the hydrogel. We performed hydrogel synthesis, mechanical characterization and biocompatibility analysis. Cell adhesion, viability and morphology of human myofibroblasts cultured on PEG- and hydrogel-coated surfaces were evaluated through confocal microscopy-based high-content analysis (HCA). Reduced activation of pro-inflammatory human macrophages cultured on hydrogels was assessed as well as the hydrogel drug release profile. Because of its high hydration, biocompatibility, low stiffness and ultra-low fouling characteristics the hydrogel enabled lower adhesion and activation of pro-inflammatory and pro-fibrotic cells vs. polystyrene controls, and showed a long-term release of the anti-fibrotic drug Everolimus. Furthermore, a polyimide surface was successfully coated with a hydrogel thin film. Our soft zwitterionic hydrogel could outperform PEG as more suitable coating material of neural electrodes for mitigating the FBR. Such poly(SBMA)-based biomaterial could also be envisioned as long-term delivery system for a sustained release of anti-inflammatory and anti-fibrotic drugs in vivo


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_1 | Pages 114 - 114
2 Jan 2024
Maglio M Tschon M Sartori M Martini L Rocchi M Dallari D Giavaresi G Fini M
Full Access

The use of implant biomaterials for prosthetic reconstructive surgery and osteosynthesis is consolidated in the orthopaedic field, improving the quality of life of patients and allowing for healthy and better ageing. However, there is the lack of advanced innovative methods to investigate the potentialities of smart biomaterials, particularly for the study of local effects of implant and osteointegration. Despite the complex process of osseointegration is difficult to recreate in vitro, the growing challenges in developing alternative models require to set-up and validate new approaches. Aim of the present study is to evaluate an advanced in vitro tissue culture model of osteointegration of titanium implants in human trabecular bone. Cubic samples (1.5×1.5 cm) of trabecular bone were harvested as waste material from hip arthroplasty surgery (CE AVEC 829/2019/Sper/IOR); cylindrical defects (2 mm Ø, 6 mm length) were created, and tissue specimens assigned to the following groups: 1) empty defects- CTR-; 2) defects implanted with a cytotoxic copper pin (Merck cod. 326429)- CTR+; 3) defects implanted with standard titanium pins of 6 µm-rough (ZARE S.r.l) -Ti6. Tissue specimens were cultured in mini rotating bioreactors in standard conditions, weekly assessing viability. At the 8-week-timepoint, immunoenzymatic, microtomographic, histological and histomorphometric analyses were performed. The model was able to simulate the effects of implantation of the materials, showing a drop in viability in CTR+, differently from Ti6 which appears to have a trophic effect on the bone. MicroCT and histological analysis supported the results, with lower BV/TV and Tb.Th values observed in CTR- compared to CTR+ and Ti6 and signs of matrix and bone deposition at the implant site. The collected data suggest the reliability of the tested model which can recreate the osseointegration process in vitro and can therefore be used for preliminary evaluations to reduce and refine in vivo preclinical models. Acknowledgment: This work was supported by Emilia-Romagna Region for the project “Sviluppo di modelli biologici in vitro ed in silico per la valutazione e predizione dell'osteointegrazione di dispositivi medici da impianto nel tessuto osseo”


Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_14 | Pages 19 - 19
1 Dec 2022
Belvedere C Ruggeri M Berti L Ortolani M Durante S Miceli M Leardini A
Full Access

Biomedical imaging is essential in the diagnosis of musculoskeletal pathologies and postoperative evaluations. In this context, Cone-Beam technology-based Computed Tomography (CBCT) can make important contributions in orthopaedics. CBCT relies on divergent cone X-rays on the whole field of view and a rotating source-detector element to generate three-dimensional (3D) volumes. For the lower limb, they can allow acquisitions under real loading conditions, taking the name Weight-Bearing CBCT (WB-CBCT). Assessments at the foot, ankle, knee, and at the upper limb, can benefit from it in situations where loading is critical to understanding the interactions between anatomical structures. The present study reports 4 recent applications using WB-CBCT in an orthopaedic centre. Patient scans by WB-CBCT were collected for examinations of the lower limb in monopodal standing position. An initial volumetric reconstruction is obtained, and the DICOM file is segmented to obtain 3D bone models. A reference frame is then established on each bone model by virtual landmark palpation or principal component analysis. Based on the variance of the model point cloud, this analysis automatically calculates longitudinal, vertical and mid-lateral axes. Using the defined references, absolute or relative orientations of the bones can be calculated in 3D. In 19 diabetic patients, 3D reconstructed bone models of the foot under load were combined with plantar pressure measurement. Significant correlations were found between bone orientations, heights above the ground, and pressure values, revealing anatomic areas potentially prone to ulceration. In 4 patients enrolled for total ankle arthroplasty, preoperative 3D reconstructions were used for prosthetic design customization, allowing prosthesis-bone mismatch to be minimized. 20 knees with femoral ligament reconstruction were acquired with WB-CBCT and standard CT (in unloading). Bone reconstructions were used to assess congruency angle and patellar tilt and TT-TG. The values obtained show differences between loading and unloading, questioning what has been observed so far. Twenty flat feet were scanned before and after Grice surgery. WB-CBCT allowed characterization of the deformity and bone realignment after surgery, demonstrating the complexity and multi-planarity of the pathology. These applications show how a more complete and realistic 3D geometric characterization of the of lower limb bones is now possible in loading using WB-CBCT. This allows for more accurate diagnoses, surgical planning, and postoperative evaluations, even by automatisms. Other applications are in progress