Advertisement for orthosearch.org.uk
Results 1 - 4 of 4
Results per page:
Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_18 | Pages 37 - 37
14 Nov 2024
Zderic I Kraus M Axente B Dhillon M Puls L Gueorguiev B Richards G Pape HC Pastor T Pastor T
Full Access

Introduction. Distal triceps tendon rupture is related to high complication rates with up to 25% failures. Elbow stiffness is another severe complication, as the traditional approach considers prolonged immobilization to ensure tendon healing. Recently a dynamic high-strength suture tape was designed, implementing a silicone-infused core for braid shortening and preventing repair elongation during mobilization, thus maintaining constant tissue approximation. The aim of this study was to biomechanically compare the novel dynamic tape versus a conventional high-strength suture tape in a human cadaveric distal triceps tendon rupture repair model. Method. Sixteen paired arms from eight donors were used. Distal triceps tendon rupture tenotomies and repairs were performed via the crossed transosseous locking Krackow stitch technique for anatomic footprint repair using either conventional suture tape (ST) or novel dynamic tape (DT). A postoperative protocol mimicking intense early rehabilitation was simulated, by a 9-day, 300-cycle daily mobilization under 120N pulling force followed by a final destructive test. Result. Significant differences were identified between the groups regarding the temporal progression of the displacement in the distal, intermediate, and proximal tendon aspects, p<0.001. DT demonstrated significantly less displacement compared to ST (4.6±1.2mm versus 7.8±2.1mm) and higher load to failure (637±113N versus 341±230N), p≤0.037. DT retracted 0.95±1.95mm after each 24-hour rest period and withstood the whole cyclic loading sequence without failure. In contrast, ST failed early in three specimens. Conclusion. From a biomechanical perspective, DT revealed lower tendon displacement and greater resistance in load to failure over ST during simulated daily mobilization, suggesting its potential for earlier elbow mobilization and prevention of postoperative elbow stiffness


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_7 | Pages 15 - 15
4 Apr 2023
Luk J
Full Access

Many factors have been reported to affect the functional survival of OCA transplants, including chondrocyte viability at time of transplantation, rate and extent of allograft bone integration, transplantation techniques, and postoperative rehabilitation protocols and adherence. The objective of this study was to determine the optimal subchondral bone drilling technique by evaluating the effects of hole diameter on the material properties of OCAs while also considering total surface area for potential biologic benefits for cell and vascular ingrowth. Using allograft tissues that would be otherwise discarded in combination with deidentified diagnostic imaging (MRI and CT), a model of a large shell osteochondral allograft was recreated using LS-PrePost and FEBio based on clinically relevant elastic material properties for cortical bone, trabecular bone, cartilage, and hole ingrowth tissue. The 0.8 mesh size model consisted of 4 mm trabecular bone, 4 mm cortical bone, and 3 mm cartilage sections that summed to a cross-sectional area of 1600 mm2 (40 mm x 40 mm). Holes were modeled to be 4mm deep in relation to clinical practice where holes are drilled from the deep margin of subchondral trabecular bone to the cortical subchondral bone plate. To test the biomechanic variations between drill hole sizes, models with hole sizes pertinent to standard-of-care commercially available orthopaedic drill sizes of 1.1mm, 2.4 mm, or 4.0 mm holes were loaded across the top surface over a one second duration and evaluated for effective stress, effective strain, 1st principal strain, and 3rd principal strain in compressive conditions. Results measured effective stress and strain and 1st and 3rd principal strain increased with hole depth. The results of the present FEA modeling study indicate that the larger 4.0 mm diameter holes were associated with greater stresses and strains within OCA shell graft, which may render the allograft at higher risk for mechanical failure. Based on these initial results, the smaller diameter 2.4 mm and 1.1 mm holes will be further investigated to determine optimal number, configuration, and depth of subchondral drilling for OCA preparation for transplantation


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_18 | Pages 36 - 36
14 Nov 2024
Zderic I Kraus M Rossenberg LV Gueorguiev B Richards G Pape HC Pastor T Pastor T
Full Access

Introduction. Tendon ruptures are a common injury and often require surgical intervention to heal. A refixation is commonly performed with high-strength suture material. However, slipping of the thread is unavoidable even at 7 knots potentially leading to reduced compression of the sutured tendon at its footprint. This study aimed to evaluate the biomechanical properties and effectiveness of a novel dynamic high-strength suture, featuring self-tightening properties. Method. Distal biceps tendon rupture tenotomies and subsequent repairs were performed in sixteen paired human forearms using either conventional or the novel dynamic high-strength sutures in a paired design. Each tendon repair utilized an intramedullary biceps button for radial fixation. Biomechanical testing aimed to simulate an aggressive postoperative rehabilitation protocol stressing the repaired constructs. For that purpose, each specimen underwent in nine sequential days a daily mobilization over 300 cycles under 0-50 N loading, followed by a final destructive test. Result. After the ninth day of cyclic loading, specimens treated with the dynamic suture exhibited significantly less tendon elongation at both proximal and distal measurement sites (-0.569±2.734 mm and 0.681±1.871 mm) compared to the conventional suture group (4.506±2.169 mm and 3.575±1.716 mm), p=0.003/p<0.002. Gap formation at the bone-tendon interface was significantly lower following suturing using dynamic suture (2.0±1.6 mm) compared to conventional suture (4.5±2.2 mm), p=0.04. The maximum load at failure was similar in both treatment groups (dynamic suture: 374± 159 N; conventional suture: 379± 154 N), p=0.925. The predominant failure mechanism was breakout of the button from the bone (dynamic suture: 5/8; conventional suture: 6/8), followed by suture rupturing, suture unraveling and tendon cut-through. Conclusion. From a biomechanical perspective, the novel dynamic high-strength suture demonstrated higher resistance against gap formation at the bone tendon interface compared to the conventional suture, which may contribute to better postoperative tendon integrity and potentially quicker functional recovery in the clinical setting


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_13 | Pages 45 - 45
1 Nov 2021
Ramirez SC Stoker A Cook J Ma R
Full Access

Introduction and Objective. Anterior cruciate ligament reconstruction (ACLR) with tendon autografts is the “gold standard” technique for surgical treatment of ACL injuries. Common tendon graft choices include patellar tendon (PT), semitendinosus/gracilis “hamstring” tendon (HT), or quadriceps tendon (QT). Healing of the graft after ACLR may be affected by graft type since the tissue is subjected to mechanical stresses during post-operative rehabilitation that play important roles in graft integration, remodeling and maturation. Abnormal mechanical loading can result in high inflammatory and degradative processes and altered extracellular matrix (ECM) synthesis and remodeling, potentially modifying tissue structure, composition, and function. Because of the importance of load and ligamentization for tendon autografts, this study was designed to compare the differential inflammatory and degradative metabolic responses to loading by three tendon types commonly used for autograft ACL reconstruction. Materials and Methods. With IRB approval (IRB # 2009879) and informed patient consent, portions of 9 QT, 7 PT and 6 HT were recovered at the time of standard of care ACLR surgeries. Tissues were minced and digested in 0.2 mg/ml collagenase solution for two hours and were then cultured in 10% FBS at 5% CO. 2. , 37°C, and 95% humidity. Once confluent, cells were plated in Collagen Type I-coated BioFlex® plates (1 × 10. 5. cells/well) and cultured for 2 days prior to the application of strain. Then, media was changed to supplemented DMEM with 2% FBS for the application of strain. Fibroblasts were subjected to continuous mechanical stimulation (2-s strain and 10-s relaxation at a 0.5 Hz frequency) at three different elongation strains (mechanical stress deprivation-0%, physiologic strain-4%, and supraphysiological strain-10%). 9. for 6 days using the Flexcell FX-4000T strain system. Media was tested for inflammatory biomarkers (PGE2, IL-8, Gro-α, and MCP-1) and degradation biomarkers (GAG content, MMP-1, MMP-2, MMP-3, TIMP-1, and TIMP-2). Significant (p<0.05) difference between graft sources were assessed with Kruskal-Wallis test and post-hoc analysis. Results are reported as median± interquartile range (IQR). Results. Differences in Inflammation-Related Biomarker Production (Figure 1): The production of PGE2 was significantly lower by HT fibroblasts compared to both QT and PT fibroblasts at all timepoints and strain levels. The production of Gro-α was significantly lower by HT fibroblasts compared to QT at all time points and strain levels, and significantly lower than PT on day 3 at 0% strain, and all strain levels on day 6. The production of IL-8 by PT fibroblasts was significantly lower than QT and HT fibroblast on day 3 at 10% strain. Differences in Degradation-Related Biomarker Production (Figure 2): The production of GAG by HT fibroblasts was significantly higher compared to both QT and PT fibroblasts on day 6 at 0% strain. The production of MMP-1 by the QT fibroblasts was significantly higher compared to HT fibroblasts on day 3 of culture at all strain levels, and in the 0% and 10% strain levels on day 6 of culture. The production of MMP-1 by the QT fibroblasts was significantly higher compared to PT fibroblasts at in the 0% and 4% strain groups on day 3 of culture. The production of TIMP-1 by the HT fibroblasts was significantly lower compared to PT fibroblasts on day 3 of culture. Conclusions. The results of this study identify potentially clinically relevant difference in the metabolic responses of tendon graft fibroblasts to strain, suggesting a lower inflammatory response by hamstring tendon fibroblasts and higher degradative response by quadriceps tendon fibroblasts. These responses may influence ACL autograft healing as well as inflammatory mediators of pain in the knee after reconstruction, which may have implications regarding graft choice and design of postoperative rehabilitation protocols for optimizing outcomes for patients undergoing ACL reconstruction. For any figures or tables, please contact the authors directly