Advertisement for orthosearch.org.uk
Results 1 - 6 of 6
Results per page:
Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_6 | Pages 41 - 41
1 Apr 2018
Kamimura M Muratsu H Kanda Y Oshima T Koga T Matsumoto T Maruo A Miya H Kuroda R
Full Access

Introduction. Both measured resection technique and gap balancing technique have been important surgical concepts in total knee arthroplasty (TKA). Modified gap technique has been reported to be beneficial for the intra-operative soft tissue balancing in posterior-stabilizing (PS) -TKA. On the other hand, we have found joint distraction force changed soft tissue balance measurement and medial knee instability would be more likely with aiming at perfect ligament balance at extension in modified gap technique. The medial knee stability after TKA was reported to essential for post-operative clinical result. We have developed a new surgical concept named as “medial preserving gap technique” for varus type osteoarthritic (OA) knees to preserve medial knee stability and provide quantitative surgical technique using tensor device. The purpose of this study was to compare post-operative knee stability between medial preserving gap technique (MPGT) and measured resection technique (MRT) in PS-TKA. Material & Method. The subjects were 140 patients underwent primary unilateral PS-TKA for varus type OA knees. The surgical technique was MPGT in 70 patients and MRT in 70 patients. There were no significant differences between two groups in the pre-operative clinical features including age, sex, ROM and deformity. Originally developed off-set type tensor device was used to evaluate both center gap and varus angle with 40 lbs. of joint distraction force. The extension gap preparation was identical in both group. In MPGT group, femoral component size and external rotation angle were adjusted depending on the differences of center gaps and varus angles between extension and flexion before posterior femoral condylar osteotomy. The knee stabilities at extension and flexion were assessed by stress radiographies; varus-valgus stress test with extension and stress epicondylar view with flexion, at one-month and one-year after TKA. We measured joint opening distance (mm) at medial and lateral compartment at both knee extension and flexion. Joint opening distances were compared between two groups using unpaired t-test, and the difference between medial and lateral compartment in each group was compared using paired t- test (p<0.05). Results. Joint opening distances at medial compartments with both extension and flexion were significantly smaller than lateral in both groups. There were no significant differences in join opening distance between two groups at medial compartment, but those at lateral were significantly smaller in MPGT than MRT with both knee extension and flexion. Discussion. In the present study, we found MPGT resulted in equal postoperative medial knee stability as in MRT, and superior to MRT as for the lateral knee stability. This finding would be the result of different femoral external rotation angle and femoral component size selection between two groups. We used the difference of varus angle and center gap between flexion and extension for the femoral component size selection and external rotation angle in MPGT. Quantitative surgical concept; MPGT, was found to be safer and feasible gap technique in PS-TKA to preserving medial knee stability and control lateral laxity in varus type OA knee. MPGT would be an advantageous gap technique to enhance clinical outcome


Introduction. Mid-flexion stability is believed to be an important factor influencing successful clinical outcomes in total knee arthroplasty. The post of a posterior-stabilizing (PS) knee engages the cam in >60° of flexion, allowing for the possibility of paradoxical mid-flexion instability in less than 60° of flexion. Highly-conforming polyethylene insert designs were introduced as an alternative to PS knees. The cruciate-substituting (CS) knee was designed to provide anteroposterior stability throughout the full range of motion. Methods. As part of a prospective, randomized, five-year clinical trial, we performed quantitative stress x-rays on a total of 65 subjects in two groups (CS and PS) who were more than five years postoperative with a well-functioning total knee. Antero-posterior stability of the knee was evaluated using stress radiographs in the lateral position. A 15 kg force was applied anteriorly and posteriorly with the knee in 45° and 90° of flexion. Measurements of anterior and posterior displacement were made by tracing lines along the posterior margin of the tibial component and the posterior edge of the femoral component, which were parallel to the posterior tibial cortex. (Figures 1–4). Results. In both 45° and 90° of flexion, the PS group demonstrated significantly less total anterior/posterior displacement compared to the CS group, (45°: 7.33 mm vs 12.44 mm, p ≤ 0.0001, 90°: 3.54 mm vs. 9.74 mm, p ≤ 0.0001). (Figures 5,6) The only statistically significant outcomes score difference was seen with the KSS function score in the female subset, with the CS score lower (81.8) compared to the PS score (94.7). (Figure 7) All of the other scores, KSS pain/motion and KSS function scores, as well as the LEAS and FJS scores, were all similar statistically, as was the range of motion and the long axis x-ray alignment. Discussion & Conclusion. The post and cam posterior-stabilized knee has traditionally been thought to be the best choice for providing stability for knee replacement with PCL-insufficiency or sacrifice. However, this difference in stability as measured with stress xrays did not correlate with any detectible differences in any of the clinical outcomes measurements collected (Knee Society Score, Forgotten Joint Score, Lower Extremity Activity Scale) or in the range of motion or coronal alignment, with the exception of the female subgroup KSS function score. In summary, the CS knee demonstrates greater total antero-posterior laxity compared to the PS knee, as measured by stress radiographs, but there is not a strong correlation with clinical outcomes measurements. A greater number of subjects and/or a younger, higher demand population studied with this protocol might produce greater differences in the outcomes, especially in the FJS score. For any figures or tables, please contact the authors directly


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_3 | Pages 118 - 118
1 Feb 2017
Fitzpatrick C Clary C Rullkoetter P
Full Access

Introduction. Patellar crepitus and clunk are tendofemoral-related complications predominantly associated with posterior-stabilizing (PS) total knee arthroplasty (TKA) designs [1]. Contact between the quadriceps tendon and the femoral component can cause irritation, pain, and catching of soft-tissue within the intercondylar notch (ICN). While the incidence of tendofemoral-related pathologies has been documented for some primary TKA designs, literature describing revision TKA is sparse. Revision components require a larger boss resection to accommodate a constrained post-cam and stem/sleeve attachments, which elevates the entrance to the ICN, potentially increasing the risk of crepitus. The objective of this study was to evaluate tendofemoral contact in primary and revision TKA designs, including designs susceptible to crepitus, and newer designs which aim to address design features associated with crepitus. Methods. Six PS TKA designs were evaluated during deep knee bend using a computational model of the Kansas knee simulator (Figure 1). Prior work has demonstrated that tendofemoral contact predictions from this model can differentiate between TKA patients with patellar crepitus and matched controls [2]. Incidence of crepitus of up to 14% has been reported in Insall-Burstein® II and PFC® Sigma® designs [3]. These designs, in addition to PFC® Sigma® TC3 (revision component), were included in the analyses. Primary and revision components of newer generation designs (NexGen®, Attune® and Attune® Revision) were also included. Designs were evaluated in a patient model with normal Insall-Salvati ratio and a modified model with patellar tendon length reduced by two standard deviations (13mm) to assess worst-case patient anatomy. Results. During simulations with normal patellar tendon length, only PFC® Sigma® and PFC® Sigma® TC3 showed tendofemoral contact within the trochlea, and no design showed contact at the transition to the ICN (Figure 2). In simulations with patella baja, Insall-Burstein® II, PFC® Sigma®, and PFC® Sigma® TC3, demonstrated tendofemoral contact across the trochlea at the transition into the notch. In contrast, NexGen®, Attune® and Attune® Revision showed tendon contact for approximately half the width of the transition to the notch (Figure 3). PFC® Sigma® and Attune® demonstrated very similar tendofemoral contact to their equivalent revision components, although the shorter trochlear groove of Attune® Revision marginally increased contact at the transition. Discussion. Insall-Burstein® II, PFC® Sigma®, and PFC® Sigma® TC3 designs showed full contact with the quadriceps tendon at the anterior border of the ICN when combined with a short patellar tendon. NexGen®, Attune® and Attune® Revision had a more gradual transition between the trochlea and the notch, which resulted in less exposure to tendon contact. Even with the shorter trochlear groove required for revision components, Attune® Revision showed minimal difference in tendofemoral contact when compared with Attune®. There appears to be distinct benefit in a femoral design which reduces tendofemoral contact at the transition to the ICN; this may be of particular importance for patients with patella baja


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_7 | Pages 21 - 21
1 May 2016
Gao B Angibaud L
Full Access

Introduction. When evaluating the biomechanical performance of a total knee arthroplasty (TKA) implant design, device companies are usually required to select the “worst case scenario” for testing by the regulatory bodies. However, most test standards (e.g., ASTM, ISO) do not explicitly specify how the “worst case” should be determined. It is quite often that an extreme size (the smallest or the largest) in a system is taken as the “worst case” size. The smallest size is sometimes selected under the rationale that it has the smallest geometry thus the weakest mechanical structure. While the largest size is sometimes selected under the rationale that it is used on the biggest patients associated with the highest loads. However, implant geometry and in vivo load are two compounding factors that together determine the implant's biomechanical challenge. As the result, the true “worst case” must be determined considering both factors, and the choice could be design-specific. This study evaluated the femorotibial contact stress of a TKA implant system, and demonstrated that the extreme sizes may not simply be the “worst case”. Methods. The femorotibial contact stress of a posterior-stabilizing TKA implant system was assessed using finite element analysis. Multiple sizes ranging from size 0 to 6 were analyzed. For each size, the CAD models were assembled at knee extension. A load equivalent to 4 times of patient body weight was applied. Average patient body weights were calculated based on the company's clinical database: 72.5, 76.0, 80.0, 87.4, 95.2, 103.4, and 111.0 kg for sizes 0, 1, 2, 3, 4, 5 and 6, respectively. Von Mises stresses in the polyethylene tibial insert were examined and compared among different sizes. Results. The peak femorotibial contact stress was found to be 20.0, 19.4, 19.2, 20.6, 20.4, 18.9 and 20.0 MPa for sizes 0, 1, 2, 3, 4, 5 and 6, respectively. The difference between the highest (size 3) and the lowest (size 5) was less than 9%. Neither size 0 nor size 6 represented the “worst case” in the scope. Discussion. Due to the cross-influence of two compounding factors (geometry and load), the determination of the “worst case” in an implant system is not as simple as how the question is often handled. For the implant system analyzed in this study, from the smallest to the largest size, the dimension of the tibial insert grew by 49% while the average patient body weight also grew by about 53%. Under the influencing of both factors, the outcome contact stress showed little variation across sizes. Neither the smallest nor the largest size demonstrated the “worst case”. It should be noted that the finding in this study may not directly apply to other TKA implant systems of different designs. The implant system analyzed in this study features a matched femorotibial geometry on every size, which is able to produce a “proportional” mechanical response. This study highlighted the importance of a more thorough assessment when selecting the clinical worst case for implant testing


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_34 | Pages 306 - 306
1 Dec 2013
Fitzpatrick CK Clary C Rullkoetter PJ
Full Access

Introduction:. While survivorship of total knee arthroplasty (TKA) is excellent, up to 25% of patients remain dissatisfied with their outcome [1, 2]. Knee instability, which is common during high demand activities, contributes to patient dissatisfaction [3]. As younger patients undergo TKA, longevity requirements and functional demands will rise [4]. Design factors influence the functional outcome of the procedure [5, 6], although in clinical studies it can be difficult to distinguish joint mechanics differences between designs due to confounding variability in patient-related factors. The objective of the current study was to assess the stability and mechanics of several current TKA designs during high-demand dynamic activities using a computational model of the lower limb. Methods:. Three high-demand dynamic activities (gait, stepdown, squat) were simulated in a previously described lower limb model (Fig. 1) [7]. The model included calibrated tibiofemoral (TF) soft-tissue structures, patellofemoral (PF) ligaments and extensor mechanism [8]. Loading conditions for the simulations were derived from telemetric patient data in order to evaluate TKA designs under physiological kinematic and loading conditions [7, 9]. Four fixed-bearing TKA designs (both cruciate-retaining (CR) and posterior-stabilizing (PS) versions) were virtually implanted into the lower limb model and joint motion, contact mechanics and interface loads were evaluated during simulation of each dynamic activity. Results:. The range of anterior-posterior (A-P) and internal-external (I-E) motion for the least stable design was twice that of the most stable design during dynamic activity (Fig. 2). The increased anterior stability on some components did not translate directly to the largest bone-implant interface shear loading, which was dependent on coronal plane conformity and I-E torque, as component ranking varied throughout activity (Fig. 2, 3). Current designs varied substantially in conformity, resulting in reduced contact area and increased contact pressures with low-conformity articulation (Fig. 2). Discussion:. While contemporary TKA designs all have good survivorship, there exists significant design differences related to the inherent stability of the articulating surfaces which result in kinematic differences during simulated high demand activities. The dynamic activity simulations developed in this study are representative of activities of daily living and provide a useful platform for design-phase iteration and pre-clinical testing of prospective TKA components


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_34 | Pages 148 - 148
1 Dec 2013
Incavo S Noble P Gold KBJ Patel R Ismaily S
Full Access

Introduction. Increasing attention to the functional outcome of total knee arthroplasty (TKA) has demonstrated that many patients experience limitations when attempting to perform demanding activities that are normal for age-matched peers, primarily because of knee symptoms. Episodes of instability following TKA are most commonly reported during activities in which significant transverse or torsional forces are supported by the joint with relatively low joint compression forces, including stair-descent and walking on sloped or uneven surfaces. This study was performed to examine the influence of conformity between the femoral and tibial components on the Antero-Posterior (AP) stability of knee during stair descent. Methods. Six cadaveric knees were loaded in a six degree-of-freedom joint simulator, with the application of external forces simulating the action of the quadriceps and hamstring muscles and the external loads and moments occurring during stair descent, including the stages of terminal swing phase, weight-acceptance phase (prior to and after quadriceps contraction) and mid-stance. During these manoeuvres, the displacement and rotation of the femur and the tibia were measured with a multi-camera high resolution motion analysis system (Fig. 1). Each knee was tested in the intact and ACL deficient condition – and after implantation of total knee prosthesis with Cruciate-Retaining (CR), Cruciate-Sacrificing with an intact PCL (CS + PCL), Cruciate-Sacrificing with an absent PCL (CS-PCL) and Posterior-Stabilizing (PS) tibial inserts (Figs 2 and 3). Results. Loading of the knee during stair descent caused the femur to displace anteriorly by 4.31 ± 1.47 mm prior to quadriceps contraction. After TKA, anterior displacement ranged from 1.11 ± 0.41 mm (PS) to 8.19 ± 3.17 mm (CS-PCL). Intermediate values were 1.46 + 0.42 mm (CS + PCL) and 3.03 ± 0.94 mm (CR). Quadriceps contraction was able to restore the femoral AP position (5.53 ± 1.08 mm posterior motion) in the intact knee, but larger quadriceps force were required for the other designs (8.22 ± 2.94 mm CS-PCL, 2.32 ± 0.83 mm CS + PCL, 2.02 ± 0.94 mm CR design, and 1.08 ± 0.38 mm with the PS. Conclusion. Pain during high demand activities such as stair descent is a common complaint of patients after TKA, and this may be due to AP instability and extra-physiologic quadriceps demand. The only designs that restored anterior-posterior knee stability were a PS insert or a CS insert with an intact PCL. The CS design without a PCL demonstrated the worst AP stability, despite the fact that these inserts are designed to be used without a PCL