Advertisement for orthosearch.org.uk
Results 1 - 10 of 10
Results per page:
Bone & Joint Research
Vol. 9, Issue 11 | Pages 768 - 777
2 Nov 2020
Huang C Lu Y Hsu L Liau J Chang T Huang C

Aims

The material and design of knee components can have a considerable effect on the contact characteristics of the tibial post. This study aimed to analyze the stress distribution on the tibial post when using different grades of polyethylene for the tibial inserts. In addition, the contact properties of fixed-bearing and mobile-bearing inserts were evaluated.

Methods

Three different grades of polyethylene were compared in this study; conventional ultra high molecular weight polyethylene (UHMWPE), highly cross-linked polyethylene (HXLPE), and vitamin E-stabilized polyethylene (VEPE). In addition, tibial baseplates with a fixed-bearing and a mobile-bearing insert were evaluated to understand differences in the contact properties. The inserts were implanted in neutral alignment and with a 10° internal malrotation. The contact stress, von Mises stress, and equivalent plastic strain (PEEQ) on the tibial posts were extracted for comparison.


The Bone & Joint Journal
Vol. 103-B, Issue 6 Supple A | Pages 137 - 144
1 Jun 2021
Lachiewicz PF Steele JR Wellman SS

Aims

To establish our early clinical results of a new total knee arthroplasty (TKA) tibial component introduced in 2013 and compare it to other designs in use at our hospital during the same period.

Methods

This is a retrospective study of 166 (154 patients) consecutive cemented, fixed bearing, posterior-stabilized (PS) TKAs (ATTUNE) at one hospital performed by five surgeons. These were compared with a reference cohort of 511 knees (470 patients) of other designs (seven manufacturers) performed at the same hospital by the same surgeons. There were no significant differences in age, sex, BMI, or follow-up times between the two cohorts. The primary outcome was revision performed or pending.


Introduction. Polyethylene wear and osteolysis remain a concern with the use of modular, fixed bearing total knee arthroplasty (TKA). A variety of highly cross-linked polyethylenes (XLPs) have been introduced to address this problem, but there are few data on the results and complications of this polyethylene in posterior-stabilized knee prosthesis. We have previously reported an interim analysis of a study comparing polyethylene tibial liners. Methods. This is a prospective randomized study of one modular posterior-stabilized total knee arthroplasty by a single surgeon. 265 patients (329 knees) were randomized to receive a standard compression molded liner (SP) or a highly cross-linked (6.5 CGy electron-beam irradiated and remelted) polyethylene liner (XLP). Patients were evaluated clinically using the classic Knee Society scores, LEAS score, presence of a knee effusion, and by standard radiographs for radiolucent lines and osteolytic lesions. The analysis was performed at a mean of 6 years (range, 2–11 years). Results. There were no clinical differences between 122 knees with SP and 123 knees with XLP in Knee Society total score; change in total score; knee function score; change in function score; LEAS score; and change in LEAS score. There was a difference in the presence of effusion (one of 123 XLP, and 10 of 122 SP; p=0.02). There was no difference in the frequency of radiolucent lines (21 knees with SP and 22 with XLP). Osteolysis was present in 4 knees (3.3%) with SP, and no knees with XLP (p=0.06). There was no difference in frequency of reoperation between the two groups (3 infection in 123 knees allocated to XLP group and six (3 infection, 1 femoral loosening, 1 instability, 1 fracture plating) in 122 knees allocated to SP group. There were no complications related to the XLP liner. Conclusion. At this length of follow-up time, with the numbers available, there were no complications, but no advantages, related to the use of this XLP tibial liner. The presence of effusion and small osteolytic lesions are more frequent with SP than XLP, but of unknown clinical importance


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_15 | Pages 222 - 222
1 Mar 2013
Kim J Chung PH Kang S Kim YS Lee HM
Full Access

The posterior-stabilized knee prosthesis is designed specifically to provide the posterior stability to a knee arthroplasty when PCL is deficient or has to be sacrificed. Posterior dislocation of such prosthesis is rare but dreaded complication. There are several causes of postoperative dislocation such as malposition of the prosthesis, preoperative valgus deformity, a defect of the extensor mechanism and overwidening of the flexion gap. Posterior-stabilized rotating-platform mobile-bearing knee implants have been widely used to further improve the postoperative range of motion by incorporation of the post and cam mechanism to improve the posterior roll back during flexion and to overcome the wear and osteolysis problems due to significant undersurface micromotion of posterior-stabilized fixed-bearing knees. But, spin-out or rotatory dislocation of the polyethylene insert can occurs as result of excessive rotation of the rotating platform accompanied by translation of the femur on the tibia after mobile-bearing total knee arthroplasty, but that is very rare. Here, authors describe an unusual case of acute 180° rotatory dislocation of the rotating platform after posterior dislocation of a posterior-stabilized mobile-bearing total knee arthroplasty. A 71-year-old male with knee osteoarthritis underwent a TKRA using posterior-stabilized mobile-bearing prosthesis. The posterior dislocation of the total knee arthroplasty occurred 5 weeks postoperatively(Fig. 1). We underwent closed reduction of posterior dislocated total knee arthroplasty resulting in a complete 180° rotatory dislocation of the rotating platform (Fig. 2). He was treated with open exploration and polyethylene exchange with a larger component. This case illustrates that dislocation of a posterior-stabilized mobile-bearing total knee arthroplasty can occur with valgus laxity, cause 90° spin-out of the polyethylene insert and closed reduction attempts may contribute to complete 180° rotatory dislocation of the rotating platform. Special attention needs to be paid to both AP and lateral view to ensure that the platform is truly reduced and not just rotated 180° as was in this case


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_4 | Pages 62 - 62
1 Jan 2016
Tanaka K Hasegawa K Sakai R Mabuchi K
Full Access

Introduction. Post cam structure, which is the main structure of posterior-stabilized design (PS), is useful to realize the intrinsic stability of a knee prosthesis replaced for a case with the severe degeneration. A large size post might, however, shorten the range of knee motion. On the other hand, retrieval studies sometimes reveal the ultrahigh molecular weight polyethylene (UHMWPE) deformation or severe failure of the tibial post of PS knee. Strength of a tibial post of available design is obviously insufficient to prevent the severe deformation. Therefore, minimally required size of the post should be clarified for polyethylene inserts. In the present study, we performed finite element (FE) analysis assumed the mechanical conditions of a tibial post in a PS knee and aimed to design criterion of a post of polyethylene insert of a knee prosthesis. Method. The shape of one commercially available knee prosthesis was referred as a posterior-stabilized knee prosthesis. The contour of the metallic femoral component was traced and digitized by hand. The contour of the UHMWPE insert was digitized by a micro computed tomography apparatus. Three dimensional finite elements were generated by a modeling software (Simpleware, Ltd. UK) as total 83000 four-noded tetrahedral elements. The bottom of the tibial insert was fully constrained. Load on femoral component was assumed to realize the tibial post impingement under several kinds of knee motions. Posterior load 100 N or 500N at the 10 degree hyperextension, anterior load 500N or 1000N during 120 degree flexion were applied (Fig. 1). The software of FE analysis was LS-DYNA ver.971 (Livemore Software Technology Corp. USA). The hardware was Endeaver Pro-4500 (EPSON Corp. Japan). The distributed values of von Mises stress and plastic strain of the tibial post were shown as the results of the analysis. Results. At the 10 degree hyperextension, the maximum values of von Mises stress and plastic strain of anterior aspect of tibial post were 26.0 MPa, 0.054 at posterior load 100 N., 35.3 MPa, 0.383 at posterior load 500N, respectively (Fig. 2). At 120 degree flexion, these values of posterior aspect of tibial post were 27.6 MPa, 0.086 at anterior load 500 N, 32.1 MPa, 0.208 at anterior load 1000N, respectively (Fig. 3). Plastic deformation has occurred on the contact area, as shown in Fig. 2, 3. Discussion. Our results showed that large plastic deformation may occur in the anterior or the posterior aspect of a tibial post by impingement during common exercises like running, climbing up, or squatting. In the femoro-tibial articulation, the true-stress decreases with increase in load because the compressive deformation can widen the contact area on the UHMWPE. The true-stress in the tibial post, however, increases with increase in load because bending and tensile deformation reduces the section area. Therefore, the design criterion of tibial post of PS knee prosthesis including the size of the post must be revised the safety coefficient that realize the sufficiently lower stress generated in the tibial post than the yield stress of UHMWPE


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_1 | Pages 109 - 109
1 Jan 2017
van Hamersveld K Valstar E Toksvig-Larsen S
Full Access

Whether it is best to retain the posterior cruciate ligament in the degenerated knee, i.e. using a cruciate-retaining (CR) total knee prosthesis (TKP), or to use a more constraint posterior-stabilized (PS) TKP is of debate. There are limited studies comparing the effect of both methods on implant fixation and clinical outcome, leaving it up to the surgeon to base this decision on anything but conclusive evidence. We assessed the effect of two different philosophies in knee arthroplasty on clinical outcome and tibial component migration measured with radiostereometric analysis (RSA), by directly comparing the CR and PS version of an otherwise similarly designed cemented TKP. Sixty patients were randomized and received a Triathlon TKP (Stryker, NJ, USA) of either CR (n=30) or PS (n=30) design. RSA measurements (primary outcome) and clinical scores including the Knee Society Score and Knee injury and Osteoarthritis Outcome Score were evaluated at baseline, at three months postoperatively and at one, two, five and seven years. A linear mixed-effects model was used to analyse the repeated measurements. Both groups showed a similar implant migration pattern, with a maximum total point motion at seven years follow-up of around 0.8 mm of migration (mean difference between groups 95% CI −0.11 to 0.15mm, p=0.842). Two components (one of each group) were considered to have an increased risk of aseptic loosening. Both groups improved equally after surgery on the KSS and KOOS scores and no differences were seen during the seven years of follow-up. No differences in implant migration nor clinical results were seen seven years after cruciate-retaining compared to posterior-stabilized total knee prostheses


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_3 | Pages 72 - 72
1 Feb 2017
Chotanaphuti T Khuangsirikul S
Full Access

Background. Both minimally invasive surgery(MIS) and computer-assisted surgery(CAS) in total knee arthroplasty have been scientifically linked with surgical benefits. However, the long-term results of these techniques are still controversial. Most surgeons assessed the surgical outcomes with regard to knee alignment and range of motion, but these factors may not reflect subjective variables, namely patient satisfaction. Purpose. To compare satisfaction and functional outcomes between two technical procedures in MIS total knee arthroplasty, namely computer-assisted MIS and conventional MIS procedure, operated on a sample group of patients after 10 years. Methods. Seventy cases of posterior-stabilized total knee prostheses were implanted using a computer-assisted system and were compared to seventy-four cases of matched total knee prostheses of the same implant using conventional technique. Both groups underwent arthrotomy by 2 centimeter limited quadriceps exposure minimally invasive surgery (2 cm Quad MIS). At an average of ten years after surgery, self-administered patient satisfaction and WOMAC scales were administered and analyzed. Results. Demographic data of both groups including sex, age, preoperative WOMAC and post-operative duration were not statistically different. Post-operative WOMAC for the computer-assisted group was 38.94±5.68, while the conventional one stood at 37.89±6.22. The median of self-administered patient satisfaction scales of the computer-assisted group was 100 (min37.5-max100), while the conventional one was 100 (min25-max100). P-value was 0.889. There was 1 re-operative case in the conventional MIS group due to peri-prosthetic infection which was treated with debridement, polyethylene exchanged and intravenous antibiotics. Conclusion. The long-term outcomes of computer-assisted MIS total knee arthroplasty are not superior to that of the conventional MIS technique. Computer assisted MIS total knee arthroplasty is one of the treatment options for osteoarthritis of the knee that has comparable levels of satisfaction to the conventional MIS technique


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_10 | Pages 73 - 73
1 May 2016
Tanaka K Sakai R Mabuchi K
Full Access

Introduction. Post cam is useful to realize the intrinsic stability of a posterior-stabilized (PS) knee prosthesis replaced for a case with the severe degeneration. Some retrieval studies reveal the ultrahigh molecular weight polyethylene (UHMWPE) deformation or severe failure of the tibial post of PS knee. Strength of the tibial post of available design is obviously insufficient to prevent the severe deformation. The large size post might, however, shorten the range of knee motion. Therefore, minimally required size of the post should be clarified for polyethylene inserts. In the present study, we performed finite element (FE) analysis assumed the mechanical conditions of a tibial post in a PS knee and aimed to design criterion of a post of polyethylene insert of a knee prosthesis. Method. The shape of three commercially available knee prostheses, product A, B, and C was referred as PS knee prosthesis. The contour of the metallic femoral component and the UHMWPE insert were digitized by a computed tomography apparatus. Three dimensional finite elements were generated by modeling software (Simpleware, Ltd. UK) as four-node tetrahedral elements. In FE analysis, we used LS-DYNA ver.971 (Livemore Software Technology Corp. USA) as the software and Endeaver Pro-4500 (EPSON Corp. Japan) as the hardware. These bottoms of the tibial insert were fully constrained. The value of 30MPa was defined as yield stress of UHMWPE. 500N posterior load was applied to each femoral component at 10 degree hyperextension. Then, 1000N anterior load at 120 degree flexion, after tibial insert was located 10 degree internal rotation (Fig. 1). These loads were assumed to realize the two types of tibial post impingement under several kinds of knee motions. The distributed values of von Mises stress and plastic strain on the tibial post were shown as the results of the analysis. Results. At the 10 degree hyperextension, these maximum values of von Mises stress were 24.5, 3.23, 27.09MPa on anterior aspect of tibial post of the product A, B, and C, respectively (Fig. 2). These plastic strains were 0.045, 0.001, 0.064. At the 120 degree flexion, these maximum values of von Mises stress were 33.67, 4.53, 27.03MPa on posterior aspect of the product A, B, and C, respectively (Fig. 3). These plastic strains were 0.28, 0.004, 0.061. The stress of product A was higher than yield stress of UHMWPE. The strain was obviously higher than that of product B and C. Discussion. Our results showed that plastic deformation may occur in the posterior aspect of a tibial post by impingement during common exercises like climbing up, or squatting. In the femoro-tibial articulation, the true-stress decreases with increase in load because the compressive deformation can widen the contact area on the UHMWPE. The true-stress in the tibial post, however, increases with increase in load because bending and tensile deformation reduces the section area. Therefore, the design criterion including the post size must be revised the safety coefficient which realizes that the generated stress in the tibial post is sufficiently lower than the yield stress of UHMWPE


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXXVII | Pages 438 - 438
1 Sep 2012
Kim Y Kim J Joo J Park J
Full Access

Background. No study compared the clinical results of the posterior-stabilized mobile-bearing knee with those of nonposterior-stabilized mobile-bearing knee in the same patients. The purpose of this study was to examine whether the clinical and radiographic results, range of motion, patients satisfaction, and complication rates would be better in the knees with a posterior-stabilized mobile-bearing knee than in the knees with a nonposterior-stabilized mobile-bearing knee. Methods. One hundred and fourteen patients (mean age, 67.9 years) received a nonposterior-stabilized mobile-bearing knee prosthesis in one knee and a posterior-stabilized mobile-bearing knee prosthesis in the contralateral knee. Seven patients were men, and 107 were women. At the time of each follow-up (mean, 7.3 years; range, seven to 7.6 years), the patients were assessed clinically and radiographically. Results. The mean postoperative Knee Society knee score (95 points versus 96 points, p=0.176), Hospital for Special Surgery knee score (92 points versus 93 points, p=0.077), and Western Ontario and McMaster University Osteoarthritis score (21 versus 20 points, p=0.785) were similar between the two group. At the final follow-up, the average range of motion was 27.7° (range, 70° to 150°) in the knees with a nonposterior stabilized mobile-bearing prosthesis and it was 132° (range, 90 to 150 °) in the knees with a posterior-stabilized mobile-bearing prosthesis. Complication rates (2.6% versus 1.8%) were similar between the two groups. The estimated survival rate was 97.4% at eight years with an overall revision rate of 2.6% (three of 114 knees) in the nonposterior-stabilized mobile-bearing prosthesis group and 98.2% at eight years with an overall revision rate of 1.8% (two of 114 knees) in the posterior-stabilized mobile-bearing prosthesis group. Conclusions. After a minimum duration of follow-up of seven years, we found no significant differences between the two groups with regard to the clinical and radiographic results, or patient satisfaction, or complication rate. However, the posterior-stabilized mobile-bearing prosthesis group had a greater range of knee motion than the nonposterior-stabilized mobile-bearing prosthesis group


Bone & Joint 360
Vol. 8, Issue 2 | Pages 16 - 18
1 Apr 2019