The use of polymethyl methacrylate based cement for the fixation of joint replacements although commonly applied, is still limited by interfacial weakness. This study aims to document the effects of a variety of surface treatments on implant/cement bonding and link them to their surface properties. Thirty seven femoral implant analogues of Ti6Al4V rods were given one of six different surface treatments: traditional grit blasting, wet and dry Vaquasheening, acid etching in concentrated sulphuric and hydrochloric acid, anodisation at 150V, and a combination of acid etching and anodisation, before being embedded into a commercially available
The aim of the present study was to assess the antibiofilm activity of daptomycin- and vancomycin-loaded
Background. Synthetic interbody spinal fusion devices are used to restore and maintain disc height and ensure proper vertebral alignment. These devices are often filled with autograft bone to facilitate bone bridging through the device while providing mechanical stability. Nonporous polyetheretherketone (PEEK) devices are widely used clinically for such procedures. 1. Trabecular Metal devices are an alternative, fabricated from porous tantalum. It was hypothesized that the porous Trabecular Metal device would better maintain autograft viability through the center of the device, the ‘graft hole’ (GH). Methods. Twenty-five goats underwent anterior cervical discectomy and fusion using a Trabecular Metal or PEEK device for 6, 12 or 26 weeks. The GH of each device was filled with autograft bone morsels harvested from the animal at implantation. Fluorochrome labeling oxytetracycline was administered to the animals and used to determine bone viability in the device regions. Following necropsy, the vertebral segments were embedded in