Advertisement for orthosearch.org.uk
Results 1 - 3 of 3
Results per page:
Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_1 | Pages 95 - 95
1 Jan 2017
Rivière C Shah H Auvinet E Iranpour F Harris S Cobb J Howell S Aframian A
Full Access

Trochlear geometry of modern femoral implants is designed for mechanical alignment (MA) technique for TKA. The biomechanical goal is to create a proximalised and more valgus trochlea to better capture the patella and optimize tracking. In contrast, Kinematic alignment (KA) technique for TKA respects the integrity of the soft tissue envelope and therefore aims to restore native articular surfaces, either femoro-tibial or femoro-patellar. Consequently, it is possible that current implant designs are not suitable for restoring patient specific trochlea anatomy when they are implanted using the kinematic technique, this could cause patellar complications, either anterior knee pain, instability or accelerated wear or loosening. The aim of our study is therefore to explore the extent to which native trochlear geometry is restored when the Persona. ®. implant (Zimmer, Warsaw, USA) is kinematically aligned. A retrospective study of a cohort of 15 patients with KA-TKA was performed with the Persona. ®. prosthesis (Zimmer, Warsaw, USA). Preoperative knee MRIs and postoperative knee CTs were segmented to create 3D femoral models. MRI and CT segmentation used Materialise Mimics and Acrobot Modeller software, respectively. Persona. ®. implants were laser scanned to generate 3D implant models. Those implant models have been overlaid on the 3D femoral implant model (generated via segmentation of postoperative CTs) to replicate, in silico, the alignment of the implant on the post-operative bone and to reproduce in the computer models the features of the implant lost due to CT metal artefacts. 3D models generated from post-operative CT and pre-operative MRI were registered to the same coordinate geometry. A custom written planner was used to align the implant, as located on the CT, onto the pre-operative MRI based model. In house software enabled a comparison of trochlea parameters between the native trochlea and the performed prosthetic trochlea. Parameters assessed included 3D trochlear axis and anteroposterior offset from medial facet, central groove, and lateral facet. Sulcus angle at 30% and 40% flexion was also measured. Inter and intra observer measurement variabilities have been assessed. Varus-valgus rotation between the native and prosthetic trochleae was significantly different (p<0.001), with the prosthetic trochlear groove being on average 7.9 degrees more valgus. Medial and lateral facets and trochlear groove were significantly understuffed (3 to 6mm) postoperatively in the proximal two thirds of the trochlear, with greatest understuffing for the lateral facet (p<0.05). The mean medio-lateral translation and internal-external rotation of the groove and the sulcus angle showed no statistical differences, pre and postoperatively. Kinematic alignment of Persona. ®. implants poorly restores native trochlear geometry. Its clinical impact remains to be defined


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_18 | Pages 24 - 24
14 Nov 2024
Petersen ET Linde KN Burvil CCH Rytter S Koppens D Dalsgaard J Hansen TB Stilling M
Full Access

Introduction. Knee osteoarthritis often causes malalignment and altering bone load. This malalignment is corrected during total knee arthroplasty surgery, balancing the ligaments. Nonetheless, preoperative gait patterns may influence postoperative prosthesis load and bone support. Thus, the purpose is to investigate the impact of preoperative gait patterns on postoperative femoral and tibial component migration in total knee arthroplasty. Method. In a prospective cohort study, 66 patients with primary knee osteoarthritis undergoing cemented Persona total knee arthroplasty were assessed. Preoperative knee kinematics was analyzed through dynamic radiostereometry and motion capture, categorizing patients into four homogeneous gait patterns. The four subgroups were labeled as the flexion group (n=20), the abduction (valgus) group (n=17), the anterior drawer group (n=10), and the tibial external rotation group (n=19). The femoral and tibial component migration was measured using static radiostereometry taken supine on the postoperative day (baseline) and 3-, 12-, and 24- months after surgery. Migration was evaluated as maximum total point motion. Result. Of the preoperatively defined four subgroups, the abduction group with a valgus-characterized gait pattern exhibited the highest migration for both the femoral (1.64 mm (CI95% 1.25; 2.03)) and tibial (1.21 mm (CI95% 0.89; 1.53)) components at 24-month follow-up. For the femoral components, the abduction group migrated 0.6 mm (CI95% 0.08; 1.12) more than the external rotation group at 24 months. For the tibial components, the abduction group migrated 0.43 mm (CI95% 0.16; 0.70) more than the external rotation group at 3 months. Furthermore, at 12- and 24-months follow-up the abduction group migrated 0.39 mm (95%CI 0.04; 0.73) and 0.45 mm (95%CI 0.01; 0.89) more than the flexion group, respectively. Conclusion. A preoperative valgus-characterized gait pattern seems to increase femoral and tibial component migration until 2 years of follow-up. This suggests that the implant fixation depends on load distributions originating from specific preoperative gait patterns


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_2 | Pages 21 - 21
1 Jan 2017
Saffarini M Nover L Demey G Dejour D
Full Access

The study aimed to compare trochlear profiles in recent total knee arthroplasty (TKA) models and to determine whether they feature improvements compared to their predecessors. The hypothesis was that recent TKA models have more anatomic trochlear compartments and would display no signs of trochlear dysplasia. The authors analyzed the geometry of the 6 following TKA models using engineering software: PFC and Attune (DePuy), NexGen and Persona (Zimmer), Noetos and KneeTec (Tornier). The mediolateral trochlear profiles were plotted at various flexion angles (0°, 15°, 30° and 45°) to deduce the sulcus angle. Analysis of sulcus angles reveals general convergence of recent designs towards anatomic values. At 0° of flexion, sulcus angles of recent implant models were between 156.0–157.4°, while those of previous generation models between 154.5–165.5°. At 30° of flexion, sulcus angles of recent models also lie within 145.7–148.6°, but those of previous models are between 149.5–152.0°. All three manufacturers deepened their trochlear profile at 30° of flexion in recent models compared to earlier designs. Sulcus angles converge towards anatomic values but still exceed radiologic signs of dysplasia by 2–5°. Recent TKA designs have more anatomic trochlear geometries than earlier TKA models by the same manufacturers, but trochlear compartments still exceed radiologic signs of trochlear dysplasia by 2° to 5°. The hypothesis that recent TKA models display no signs of trochlear dysplasia is therefore refuted. Surgeons should be aware of design limitations to optimize choice of implant and extensor mechanisms alignment. Level of evidence: IV geometric implant analysis