Aims. To determine whether there is any benefit using a minimally invasive trans-sartorial approach as described by Professor Søballe compared to the ilio-femoral for
Periacetabular osteolysis is seen in response to particles (polyethylene, ceramic, metal or cement), at times in the presence of an unstable implant, and perhaps made worse by the unique host response to the particle burden. The impact of wear modes: due to either the primary bearing surface (MOP, MOM, COC) or unintended surfaces as seen in impingement, as well as the quality of the bearing counterface all influence the extent of the osteolytic response. The final common pathway appears to be via macrophage stimulation, an upregulation of cytokines leading to a resorption of bone. The patterns of lysis range from linear resorption at the implant interface to more expansile patterns which can be more dramatic in size and may place the implant at jeopardy for loosening. Assessment of implant fixation as well as extent of the lytic process employs the use of plain radiographs (including oblique views), computerised tomography and magnetic resonance imaging. The utility of MRI for the quantification of bone loss as well as the newer phenomena of associated soft tissue lesions (pseudotumors, adverse tissue reactions) has turned out to be a valuable tool in helping determine timing and need for revision. The basic principles in determining need for revision surgery revolve around: degree of lysis, integrity of the soft tissues, fixation of the implant, track record of the implant, as well as patient factors including symptoms, age and activity. In cemented sockets, progressive bone loss, pain with or without overt loosening is indication for revision which is generally accomplished using an uncemented hemispherical acetabular component with bone graft and screw augmentation. In the uncemented socket, the decision to revise is based upon a) implant stability, 2) the integrity of the locking mechanism, 3) degree of bone loss. With stable implants, polyethylene exchange and “lesional” treatment is appropriate. Well fixed implants with extensive lysis can be successfully managed with liner exchange and bone grafting as necessary. If the liner locking mechanism is compromised, cementing a liner into place is an excellent strategy. Removing a well fixed cup with extensive lysis runs the risk of encountering a large acetabular defect which may be difficult to reconstruct. Loose implants clearly require revision. In the era of “hard bearings”, progressive soft tissue expansion leading to damage of the abductor and other soft tissue constraints about the hip is an indication for revision. Revision of MOM THR's may be performed by maintaining the femoral component and performing an isolated acetabular revision or in some instances of modular acetabular components, maintaining the shell and inserting a new liner. In all instances of implant retention, it is critical to confirm that the components are in optimised position: implants retained in suboptimal position are at risk for early failure.
With cementless porous-coated acetabular replacements, extensive bone loss can occur without effecting implant stability. As a result, the surgeon is frequently faced with re-operating on a well-fixed cementless acetabular component with osteolysis and must decide whether or not to remove a well-fixed porous coated socket. A classification system and treatment algorithm has been developed to aid in management decisions regarding re-operation for polyethylene wear and pelvic osteolysis. Cases are classified into one of 3 possible categories depending on the radiographic stability of the porous coated shell and the ability to replace the polyethylene liner. Type I case; stable porous coated shell, liner replaceable; Type II case; socket stable, liner not replaceable; Type III case; socket loose, not osseointegrated. Treatment Algorithms - Retain well-fixed shell in Type I cases and replace the liner. Debride accessible lytic lesions and graft with allograft chips. Remove the well-fixed shell in Type II case. Assess defect once the shell is removed. Reconstruction based on the bony defect present. The vast majority can be revised with a larger porous coated socket. Remove loose socket in Type III cases. Assess defect and reconstruct based on the defect. There is a greater need for more extensive grafting and the use of reconstruction rings with Type III cases. This treatment algorithm has helped the authors successfully evaluate and treat a large series of patients with polyethylene wear and pelvic osteolysis in association with porous coated acetabular components. The stability of the acetabular component and appropriate knowledge of the implant are important factors that impact surgical management.
With cementless porous-coated acetabular replacements, extensive bone loss can occur without affecting implant stability. As a result, the surgeon is frequently faced with re-operating on a well-fixed cementless acetabular component with osteolysis and must decide whether or not to remove a well-fixed porous coated socket. A classification system and treatment algorithm has been developed to aid in management decisions regarding re-operation for polyethylene wear and pelvic osteolysis. Cases are classified into one of 3 possible categories depending on the radiographic stability of the porous coated shell and the ability to replace the polyethylene liner. Type I case; stable porous coated shell, liner replaceable; Type II case; socket stable, liner not replaceable; Type III case; socket loose, not osseointegrated Relative Contra-indications for Liner Exchange – Type II Case - Malpositioned socket, Severely damaged shell or lock detail (consider cementing shell in place), Poor track record of the implant, Highly crosslinked polyethylene liner of adequate thickness not available, Ongrowth (as opposed to ingrowth) fixation surface Treatment Algorithm Type I Case: Retain well-fixed shell in Type I cases and replace the liner. Debride accessible lytic lesions and graft with allograft chips. Type II Case: Remove the well-fixed shell in Type II case. Assess defect once the shell is removed. Reconstruction based on the bony defect present. The vast majority can be revised with a larger porous coated socket. Type III Case: Remove loose socket. Assess defect and reconstruct based on the defect. There is a greater need for more extensive grafting and the use of reconstruction rings with Type III cases. This treatment algorithm has helped the authors successfully evaluate and treat a large series of patients with polyethylene wear and pelvic osteolysis in association with porous coated acetabular components. The stability of the acetabular component and appropriate knowledge of the implant are important factors that impact surgical management.
Polyethylene and femoral head exchange for wear or osteolysis is a common operation. The difficulty lies in the facts that wear and osteolysis are difficult to measure, wear does not always correlate with osteolysis, catastrophic failure (wear through, loosening, or fracture) is difficult to predict, and these problems are usually asymptomatic. I currently recommend this procedure when complete wear through of the polyethylene is present or impending, when the patient has obvious wear and symptoms, or if there is a rapidly enlarging osteolytic lesion. The surgical goals focus on management of debris generation and management of the osteolytic lesion. A third goal becomes avoidance of the know complications of this procedure. Management of debris generation basically involves modernising the head and polyethylene. Management of the osteolytic lesion includes debridement and when possible grafting. By far the most common complication after this procedure is dislocation. Prevention of dislocation should be accomplished by patient education, use of larger heads when possible, and capsular repair. Prerequisites to perform this procedure are a replacement liner of adequate thickness that can be locked or cemented in place. The acetabular component must be stable. Lastly the component must be properly oriented to minimise both wear and dislocation. Metal-on-metal liner conversion to metal-on-poly is becoming more common. Since patient satisfaction with THA is high, MoM patients may unknowingly minimise their symptoms because they are minor compared to the symptoms before surgery. The patient history should include specific questions about groin pain, swelling, hip noise, and asking the patient if they notice their hip on a daily basis. Patient symptoms, osteolysis and a pseudotumor are indications for modular conversion. Radiographically stable, well-oriented components that can accept a polyethylene liner are requirements for a successful conversion.
Polyethylene and femoral head exchange for wear or osteolysis is a common operation. The difficulty lies in the facts that wear and osteolysis are difficult to measure, wear does not always correlate with osteolysis, catastrophic failure (wear through, loosening, or fracture) is difficult to predict, and these problems are usually asymptomatic. I currently recommend this procedure when complete wear through of the polyethylene is present or impending, when the patient has obvious wear and symptoms, or if there is a rapidly enlarging osteolytic lesion. The surgical goals focus on management of debris generation and management of the osteolytic lesion. A third goal becomes avoidance of the know complications of this procedure. Management of debris generation basically involves modernising the head and polyethylene. Management of the osteolytic lesion includes debridement and when possible grafting. By far the most common complication after this procedure is dislocation. Prevention of dislocation should be accomplished by patient education, use of larger heads when possible, and capsular repair. Prerequisites to perform this procedure are a replacement liner of adequate thickness that can be locked or cemented in place. The acetabular component must be stable. Lastly the component must be properly oriented to minimise both wear and dislocation. Metal-on-metal liner conversion to metal-on-poly is becoming more common. Since patient satisfaction with THA is high, MoM patients may unknowingly minimise their symptoms because they are minor compared to the symptoms before surgery. The patient history should include specific questions about groin pain, swelling, hip noise, and asking the patient if they notice their hip on a daily basis. Patient symptoms, osteolysis and a pseudotumour are indications for modular conversion. Radiographically stable, well-oriented components that can accept a polyethylene liner are requirements for a successful conversion.Metal-on-metal liner exchanges
The reconstruction of
The reconstruction of
Aim. We present the long-term surgical outcomes, complications, implant survival and causes of implant failure in patients treated with the modified Harrington procedure using antegrade large diameter pins. Patients and Methods. A cohort of 50 consecutive patients who underwent the modified Harrington procedure along with cemented THA for
INTRODUCTION. Hip resurfacing offers a more bone conserving solution than total hip replacement (THR) but currently has limited clinical indications related to some poor design concepts and metal ion related issues. Other materials are currently being investigated based on their successful clinical history in THR such as Zirconia Toughened Alumina (ZTA, Biolox Delta, CeramTec, Germany) which has shown low wear rates and good biocompatibility but has previously only been used as a bearing surface in THR. A newly developed direct cementless fixation all-ceramic (ZTA) resurfacing cup offers a new solution for resurfacing however ZTA has a Young's modulus approximately 1.6 times greater than CoCr - such may affect the acetabular bone remodelling. This modelling study investigates whether increased stress shielding may occur when compared to a CoCr resurfacing implant with successful known clinical survivorship. METHODS. A finite element model of a hemipelvis constructed from CT scans was used and virtually reamed to a diameter of 58mm. Simulations were conducted and comparisons made of the ‘intact’ acetabulum and ‘as implanted’ with monobloc cups made from CoCr (Adept®, MatOrtho Ltd, UK) and ZTA (ReCerf ™, MatOrtho Ltd. UK) orientated at 35° inclination and 20° anteversion. The cups were loaded with 3.97kN representing a walking load of 280% for an upper bound height patient with a BMI of 35. The cup-bone interface was assigned a coulomb slip-stick function with a coefficient of friction of 0.5. The percentage change in strain energy density between the intact and implanted states was used to indicate hypertrophy (increase in density) or stress shielding (decrease in density). RESULTS. Implanting both cups changed the strain distribution observed in the hemipelvis, Figure 1. The change in strain distribution was similar between materials and indicated a similar response from the bone, Figure 2. In both implanted cases, the inferior
Arthrosis of the hip joint can be a significant source of pain and dysfunction. While hip replacement surgery has emerged as the gold standard for the treatment of end stage coxarthrosis, there are several non-arthroplasty management options that can help patients with mild and moderate hip arthritis. Therefore, the purpose of this paper is to review early prophylactic interventions that may help defer or avoid hip arthroplasty. Nonoperative management for the symptomatic hip involves minimizing joint inflammation and maximizing joint mobility through intra-articular joint injections and exercise therapy. While weight loss, activity modifications, and low impact exercises is generally recommended for patients with arthritis, the effects of these modalities on joint strength and mobility are highly variable. Intra-articular steroid injections tended to offer reliable short-term pain relief (3–4 weeks) but provided unreliable long-term efficacy. Additionally, injections of hyaluronic acid do not appear to provide improved pain relief compared to other modalities. Finally, platelet rich plasma injections do not perform better than HA injections for patients with moderate hip joint arthrosis. Primary hip joint arthrosis is rare, and therefore treatment such as
Introduction. Uncemented porous coated acetabular components have gained more research emphasis in recent years compared to their cemented counterparts, largely owing to the natural biological fixation they offer. Nevertheless, sufficient peri-prosthetic bone ingrowth is essential for long-term fixation of such uncemented acetabular components. The phenomenon of bone ingrowth can be predicted based on mechanoregulatory principles of primary bone fracture healing. Literature review reveals that the surface texture of implant plays a major role in implant-bone fixation mechanism. A few insilico models based on 2-D microscale finite elements (FE) were reported in literatures to predict the influence of surface texture designs on peri-prosthetic bone ingrowth. However, most of these studies were based on FE models of dental implants. The primary objective of this study, therefore, is to mechanobiologically predict the influence of surface texture on bone- ingrowth in acetabular components considering a novel 3-D mesh-shaped surface texture on the implant. Materials/Methods. The 3-D microscale model [Fig.1] of implant-bone interface was developed using CATIA. ®. V5R20 software (DassaultSystèmes, France) and was modelled in ANSYS V15.0 FE software (Ansys Inc., PA, USA) using coupled linear elastic ten-noded tetrahedral finite elements. The model consists of cast-inbeaded mesh textured implant having finely meshed inter-bead spacing. Linear, elastic and isotropic material properties considering Young's modulus of 210 GPa and Poisson's ratio of 0.3 for stainless steel implant were employed in the model. Boundary of bone was assumed to be rich in Mesenchymal Stem Cells(MSC) with periodic boundary conditions at contralateral surfaces. The linear elastic material properties in the model were updated iteratively through a tissue differentiation algorithm that works on the principle of mechanotransduction driven by local mechanical stimuli, e.g. hydrostatic pressure and equivalent deviatoric strain. Results. Results indicate that bone ingrowth is inhibited upon increasing the inter-bead spacing and upon decreasing the bead aspect ratio. It has been observed that there is a predominant influence of bead spacing diameter on the
Purpose. To validate a small, easy to use and cost-effective augmented marker-based hybrid navigation system for
Background. The use of robotics in joint arthroplasty was initiated in 1992 with the introduction of the ROBODOC® Surgical Assistant device for planning and active robotic preparation of the femoral canal in THA. From 1993–1996, an FDA trial was undertaken using pin-based fiduciary markers to register the CT to the robot coordinate system. From 2000–2006, a second FDA trial was initiated using a point-to-surface matching “pinless” registration system. Combined, these two studies offer the first long-term follow-up of robot-assisted THA using an active robotic system for preparation of the femoral canal during THA. Methods. Due to the support of an open implant architecture, patients were implanted with either the Depuy AML, Howmedica Osteoloc, or Zimmer VerSys FMT. Combining patients from the two studies, 86 THA's were performed in 63 patients using the active robotic system. Of these 63 patients, 7 were confirmed to have died and 5 have been lost to follow-up, 2 declined to participate due to infirmity, 37 are still recruiting, and 12 are currently enrolled (16 hips). Data collected included: Harris Hip Scale, HSQ-12, WOMAC, UCLA Activity Score, VAS Pain Score as well as radiographic analysis. The demographics at follow-up were:. Results. There were no revisions of the femoral component for aseptic reasons. Of the 16 hips enrolled, only two have required reoperation for head and liner change. Clinical results are given below:. Radiographic analysis found that
Endoprosthetic reconstruction for pathologic acetabular fractures is associated with a high risk of periprosthetic joint infection. In this setting, bone defect reconstruction utilising co-delivery of a synthetic bone substitute with an antibiotic, is an attractive treatment option from both, therapeutic and prophylactic perspective. We wished to address some concerns that remain regarding the possible presence of potentially wear inducing particles in the periprosthetic joint space subsequent to this procedure. We analysed a drain fluid sample from an endoprosthetic reconstruction of a pathologic acetabular fracture with implantation of a gentamicin eluting, biphasic bone graft substitute, consisting of 40% hydroxyapatite (HA) and 60% calcium sulphate (CERAMENT G), into the residual
Purpose. The hip region is the second most common site for tuberculosis following the spine in children. The aim is to describe the variable radiological patterns of presentation and their resemblance to pyogenic infection, tumours and other benign conditions of bone in children. Methods. The clinical and radiological records of 29 children aged 10 months–13 years with confirmed tuberculosis of the hip region seen between 1990 and 2011 were reviewed retrospectively. Clinical features were pain, limp and flexion, adduction contractures. Abscesses and sinuses were seen in 4 children. The ESR ranged between 7–110 mm/hr. Mantoux was positive in 20 children. All cases were histologically confirmed. Treatment involved biopsy, currettage of bone defects, limited synovectomy and adductor tenotomy. Patients were immobilised for 4 weeks on a spica cast or traction. Antituberculous treatment was administered for 9–12 months. Results. Radiologically 9 lesions were extra-articular and 20 involved the joint synovium and articular surface. Extra-articular lesions were seen in the pubis, greater and lesser trochanter, ilium, proximal femur and
Introduction. Metal on metal hip bearings (MoM) are under scrutiny. Short and mid-term complications attributed to metal wear debris have been reported. Distinctions between MoM prostheses exist. Thus, generalizing findings from one design to another is questionable. This study reports minimum 5 yr. Pinnacle™ modular MoM results. Methods. Between September 2001 and October 2004, 95 consecutive MoM THAs were performed by one surgeon in a prospective cohort design. Mean age was 53 yrs (range 34-70); 57 were male. Mean BMI was 29 (range 20-46). OA was noted in 87 patients. Head size was 28mm in 3 and 36mm in 92. Surgical approach was postero-lateral in all patients. Harris Hip Score (HHS), WOMAC, ROM and radiographs were evaluated preoperatively, at 6-months, and yearly thereafter. Results. Mean follow-up was 6 yrs (SD 1.7). Mean radiographic follow-up was 5.2 yrs (SD 1.2). Radiographs were available for 83 hips. Mean HHS improved from 43 preoperative (range 15–68) to 98 (range 86-100, p < 0.0001). Mean WOMAC score improved from 56 (range 15-94) to 12 (range 0-63, p < 0.0001). Flexion improved from 95° (range 50-115) to 102° (range 90-120, p < 0.0001). Complications included trochanteric fx (6 mo) without component removal, traumatic femoral Fx (40 days) with stem replacement, and one dislocation. No other device related adverse events were reported. No
Limited postoperative range-of-motion (ROM) can lead to patient dissatisfaction and dislocation in total hip arthroplasties (THAs). To avoid this, femur first approaches have been developed which optimise particular aspects of ROM by using a virtual analysis of ROM. This study analysis whether it is possible to accurately assess ROM based on an intra-operative acquisition of anatomical structures by using an image-free navigation system. It compares the outcome of a collision detection algorithm when using 3d models from computerised tomography (CT) scans on the one side and intra-operatively acquired 3D models on the other side within a cadaver study. It focuses on
Prior to the 1970s, almost all bone sarcomas were treated by amputation. The first distal femoral resection and reconstruction was performed in 1973 by Dr Kenneth C Francis at the Memorial Sloan-Kettering Cancer Centre in New York. Since that time, limb-sparing surgery for primary sarcoma has become the mainstay of sarcoma surgery throughout the world. Initially, the use of mega-prostheses of increasing complexity, involving all the major long bones and both pelvic and shoulder girdles, was popularised. In the early 1980s, wide use of massive allograft reconstructions became widespread in both Europe and in multiple centres in the USA and UK. Since that time, increasing complexity in the design of prostheses has allowed for increasing functional reconstructions to occur, but the use of allograft has become less popular due to the development of late graft failures of patients survive past ten years. Fracture rates approaching 50% at 10 years are reported, and thus, other forms of reconstruction are being sought. Techniques of leg lengthening, and bone docking procedures to replace segmental bone loss to tumour are now employed, but the use of biological vascularised reconstructions are becoming more common as patient survivorship increases with children surviving their disease. The use of vascularised fibular graft, composite grafts and re-implantation of extra-corporeally irradiated bone segments are becoming more popular. The improvement in survivorship brought about the use of chemotherapy is producing a population of patients with at least a 65% ten year survivorship, and as many of these patients are children, limb salvage procedures have to survive for many decades. The use of growing prostheses for children have been available for some 25 years, first commencing in Stanmore, UK, with mechanical lengthening prostheses. Non-invasive electro-magnetic induction coil mechanisms are now available to produce leg lengthening, with out the need for open surgery. Whilst many of these techniques have great success, the area of soft tissue attachment to metallic prostheses has not been solved, and reattachment of muscles is of great importance, of course, for return of function. There are great problems in the shoulder joints where sacrifice of rotator cuff muscles is necessary in obtaining adequate disease clearance at the time of primary resection, and a stable shoulder construct, with good movement, has yet to emerge. Similar areas of great difficultly remain the