Advertisement for orthosearch.org.uk
Results 1 - 5 of 5
Results per page:
Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_5 | Pages 51 - 51
1 Feb 2016
Amiri S Poon J Garbuz D Bassam M
Full Access

The anterior pelvic plane (APP) is used as a reference in various pelvic surgeries in orthopaedics. Current methods for identifying the APP are limited in accuracy and efficiency. A quick and accurate method for registering the pelvis orientation can be very useful. Previously, we have introduced a Tracked C-arm (TC-arm) system for use with any C-arm fluoroscopy for producing spatially calibrated imaging views. This system has been tried for estimating the APP. Early results, however, has shown limited repeatability in identifying the anterior superior iliac spine (ASIS) landmarks. This study improves the previous algorithms for a robust registration of the APP. A Sawbone pelvis was used, and its APP was marked by radio-dense ball-bearings. In the new addition, the TC-arm allowed segmenting the ASIS in an interactive user-interface by taking guidance from a reference line tangential to the ipsilateral pubic tubercle for marking the most anterior point on the iliac-crest. The imaging and analysis was repeated 10 times. The results were compared to reconstruction of the fiducial markers placed on the true APP. Accuracy of 1.4° and 4.4° were found for registering the pelvic tilt and rotation, correspondingly. The overall accuracy and precision of registration of the APP were 4.7° and 0.82°, correspondingly. The new method showed 7.5 times improvement in repeatability of measuring the pelvic tilt (SD<0.4°) compared to the previous fluoroscopic methods. This technique addresses an important challenge in estimation of the pelvic bone which is crucial for reliable device placement and producing standard radiographic views in surgery


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_5 | Pages 22 - 22
1 Feb 2016
Kraus M Gebhard F
Full Access

Beside spine and pelvis surgery, computer-assisted guidance systems are not used frequently for musculoskeletal injuries. Main reason is the dependence on a fixed reference array that must be firmly attached to all moving parts. We investigated a novel fluoroscopy-based image guidance system in orthopaedic trauma surgery that uses a different technique. This was a prospective, not randomised single centre case series at a level I trauma centre. 45 patients with 46 injuries (foot 12, shoulder 10, long bones 7, hand and wrist 7, ankle 7, spine and pelvis 4) were included. Different surgical procedures were examined following the basic principles of the AO/ASIF. Main outcome measurements were the number of trials for implant placement, total surgery time, usability via user questionnaire and system failure rate. Furthermore we wanted to test the ability of the new system to be integrated in existing surgical workflows. In all cases, the trajectory function was used, inserting a total of 56 guided implants. The trajectory was the most popular feature used by surgeons (n=43, 93.5%), followed by the length measurement tool (n=29, 63%) and the bending function (n=17, 37%). The functions could be freely activated by the performing surgeon. The system failed when used in pelvic and spinal injuries, resulting in a total failure rate of 6.5% (n=3) of all included cases. The overall usability was rated as good, scoring 84.3%. This study examined the clinical application of a fluoroscopy-based image guidance system for different musculoskeletal injuries. Its major advantage is the high integrability in the accustomed surgical workflow and its connectivity with existing technical equipment. It can hardly be compared to known navigation solutions, since instruments are not tracked and fixed reference arrays are not required. Expected advantages should be explored in randomised studies


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_18 | Pages 13 - 13
1 Dec 2014
Nademi M Naikoti K Salloum W Jones HW Clayson A Shah N
Full Access

Stoppa approach has recently been adapted for pelvic surgery as it allows direct intra-pelvic reduction and fixation of the quadrilateral plate and anterior column. We report our early experience, indications and complications with this exposure introduced in 2010 in our tertiary unit. A Retrospective review of all Stoppa approaches in pelvic-acetabular fixations was performed from a prospectively maintained database. Of the 25 patients, mean age 40 years (range 15–76), who underwent pelvic-acetabular fixation using Stoppa approach, 21 patients had mean follow up of 7.3 months (1–48 months). All except 24% of patients had one or more additional systemic injury some requiring additional surgery. There were 6 acetabular fractures, 13 pelvic ring injuries and 6 combined fractures. Mean injury-surgery interval was 9 days (range 3–20). 8 patients had an isolated Stoppa approach whilst the remaining others also had an additional approach. Mean surgical time was 239 minutes. Anatomical reduction was achieved in 96% (24/25) cases. There was 1 minor intra-operative vascular injury, repaired immediately successfully, and no late wound infections, or other visceral complications. One patient reported new onset sensory numbness which resolved after the first review. Two patients reported erectile dysfunction thought to be caused by the initial injury. One patient had asymptomatic plate loosening. None required revision surgery. Despite the obvious learning curve, we found this approach safe and it did not compromise accuracy of reduction in well selected patients, but early surgery within 10–14 days is recommended to aid optimal reduction


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_28 | Pages 118 - 118
1 Aug 2013
Kraus M Dehner C Riepl C Krischak G Gebhard F Schöll H
Full Access

In orthopaedic surgery, as in many other surgical fields, there is a clear tendency towards the use of minimally invasive procedures. These techniques are increasingly being implemented almost routinely for procedures such as spine and pelvis surgery. However, for fracture treatment and for applications involving small bones, such as hand and foot surgery, these systems are hardly ever used. We introduce a new system for image based guidance in traumatology. We included 20 patients with a fracture of the fifth metatarsal. They were randomised on admission into two groups. Ten patients in the metatarsal group were operated conventionally and ten were operated with the assistance of a new image guidance system. This system is based on 2D-fluoro images which are acquired with a conventional c-arm and are transferred to the system workstation. After detecting marked tools, it can be used to display trajectories for K-wire guidance in the c-arm shot. The average duration of surgery (time from incision to suture) in the image-based group was 12.7 minutes ± 5.5 (min. 6, max. 23), in the conventional group it was 17 minutes ± 6.5 (min. 7, max. 28) (p=0.086). The average duration of radiation was 18 seconds ± 8.5 (min. 6, max 36) in the image-based group vs. 32.4 seconds ± 19.4 (min. 12, max. 66) in the conventional group (p=0.057). An average of 4.7 C-arm shots ± 2 (min 2, max 9) were necessary in the image-based group to position the K-wire. For the conventional group, 8.2 shots ± 2.3 (min 4, max 12) were used (p=0.0073). It took 1.6 trials ± 0.7 (min.1, max. 3) to position the K-wire for the image-based procedures, in the conventional group 2.7 trials ± 0.9 (min. 1, max 4) were necessary (p=0.0084). There were no malfunctions or adverse events in any of the image-based navigational cases. No screws needed to be replaced in the image-based group. In the conventional group, two screws were replaced intra-operatively because they were too short in the control c-arm shot, and the screw threads did not bridge the fracture gap completely, leading to insufficient compression. In this pilot study with only a small sample size, the image-based guidance system could be integrated into the existing surgical workflow and was used for applications, where existing navigation systems are not commonly used. The technology gives the surgeon additional information and can reduce the number of trials for perfect implant positioning. This potentially increases the safety of the surgical procedure and spares intact bone substance which is essential for the footing of implants in small bones and fragment fixation. Whether these factors contribute to a reduction in complications or revision rate must be confirmed in larger prospective studies


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XLIV | Pages 96 - 96
1 Oct 2012
Dubois-Ferriere V Hoffmeyer P Assal M
Full Access

In foot and ankle surgery incorrect placement of implants, or inaccuracy in fracture reduction may remain undiscovered with the use of conventional C-arm fluoroscopy. These imperfections are often only recognized on postoperative computer tomography scans. The apparition of three dimensional (3D) mobile Imaging system has allowed to provide an intraoperative control of fracture reduction and implant placement. Three dimensional computer assisted surgery (CAS) has proven to improve accuracy in spine and pelvic surgery. We hypothesized that 3D-based CAS could improve accuracy in foot and ankle surgery. The purpose of our study was to evaluate the feasibility and utility of a multi-dimensional surgical imaging platform with intra-operative three dimensional imaging and/or CAS in a broad array of foot and ankle traumatic and orthopaedic surgery. Cohort study of patients where the 3D mobile imaging system was used for intraoperative 3D imaging or 3D-based CAS in foot and ankle surgery. The imaging system used was the O-arm Surgical Imaging System and the navigation system was the Medtronic's StealthStation. Surgical procedures were performed according to standard protocols. In case of fractures, image acquisition was performed after reduction of the fracture. In cases of 3D-based CAS, image acquisition was performed at the surgical step before implants placement. At the end of the operations, an intraoperative 3D scan was made. We used the O-arm Surgical Imaging system in 11 patients: intraoperative 3D scans were performed in 3 cases of percutaneus fixation of distal tibio-fibular syndesmotic disruptions; in 2 of the cases, revision of reduction and/or implant placement were needed after the intraoperative 3D scan. Three dimensional CAS was used in 10 cases: 2 open reduction and internal fixation (ORIF) of the calcaneum, 1 subtalar fusion, 2 ankle arthrodesis, 1 retrograde drilling of an osteochondral lesion of the talus, 1 Charcot diabetic reconstruction foot and 1 intramedullary screw fixation of a fifth metatarsal fracture. The guidance was used essentially for screw placement, except in the retrograde drilling of an osteochondral lesion where the guidance was used to navigate the drill tool. Intraoperative 3D imaging showed a good accuracy in implant placement with no need to revision of implants. We report a preliminary case series with use of the O-arm Surgical Imaging System in the field of foot and ankle surgery. This system has been used either as intraoperative 3D imaging control or for 3D-based CAS. In our series, the 3D computer assisted navigation has been very useful in the placement of implants and has shown that guidance of implants is feasible in foot and ankle surgery. Intraoperative 3D imaging could confirm the accuracy of the system as no revisions were needed. Using the O-arm as intraoperative 3D imaging was also beneficial because it allowed todemonstrate intraoperative malreduction or malposition of implants (which were repositioned immediately). Intraoperative 3D imaging system showed very promising preliminary results in foot and ankle surgery. There is no doubt that intraoperative use of 3D imaging will become a standard of care. The exact indications need however to be defined with further studies