Long-term survival of massive prostheses used to treat bone cancers is associated with extra-cortical bone growth and osteointegration into a grooved hydroxyapatite coated collar positioned adjacent to the transection site on the implant shaft [1]. The survivorship at 10 years reduces from 98% to 75% where osteointegration of the shaft does not occur. Although current finite element (FE) methods successfully model bone adaption, optimisation of adventitious new bone growth and osteointegration is difficult to predict. There is thus a need to improve existing FE models by including biological processes of
Carbonate-substituted hydroxyapatite (CHA) is more osteoconductive and more resorbable than hydroxyapatite (HA), but the underlying mode of its action is unclear. We hypothesised that increased resorption of the ceramic by osteoclasts might subsequently upregulate osteoblasts by a coupling mechanism, and sought to test this in a large animal model. Defects were created in both the lateral femoral condyles of 12 adult sheep. Six were implanted with CHA granules bilaterally, and six with HA. Six of the animals in each group received the bisphosphonate zoledronate (0.05 mg/kg), which inhibits the function of osteoclasts, intra-operatively. After six weeks bony ingrowth was greater in the CHA implants than in HA, but not in the animals given zoledronate. Functional osteoclasts are necessary for the enhanced
The current gold standard bone substitute is still autologous bone, despite the fact that its harvest demands for a second operation site, causes additional pain, discomfort, potential destruction of the grafting site, and is limited in supply. Since newly developed clinical approaches like transplantation of cells are invasive and costly, and osteoinduction by bone morphogenetic proteins is expensive and is associated with mild to severe side effects, the optimization of
We evaluated the efficacy and biocompatibility of porous apatite-wollastonite glass ceramic (AW-GC) as an intramedullary plug in total hip replacement (THR) for up to two years in 22 adult beagle dogs. Cylindrical porous AW-GC rods (70% porosity, mean pore size 200 3m) were prepared. Four dogs were killed at 1, 3, 6 and 12 months each and six at 24 months after implantation. Radiological evaluation confirmed the efficacy of porous AW-CG as an intramedullary plug. Histological evaluation showed
Summary. A specialised 3D- printed scaffold, combined with fillers and bioactive molecules, can be designed and characterised to demonstrate the efficacy of synthetic, off-the-shelf and custom fabricated scaffolds for the repair of long bone defects. Introduction. Using specialised three-dimensional (3-D) printing technology, combined with fillers and bioactive molecules, 3-D scaffolds for bone repair of sizable defects can be manufactured with a level of design customization that other methods lack. Hydroxyapatite (HA)/Beta-Tri-Calcium Phosphate (β -TCP) scaffold components may be created that provide mechanical strength, guide osseo- conduction and integration, and remodel over time. Additionally, research suggests that bone morphogenic protein (BMP) stimulates growth and differentiation of new bone. Therefore, we hypothesise that with the addition of BMP, HA- β -TCP scaffolds will show improved regeneration of bone over critical sized bone defects in an in vivo model. Patients & Methods. Scaffolds were implanted in six New Zealand White rabbits with a 10mm radial defect for 2 and 8 weeks. The scaffolds, made from 15% HA: 85% β-TCP, were designed using ROBOCAD design software and fabricated using a 3-D printing Robocast machine. Scaffolds were sintered at 1100°C for 4 hours with a final composition of 5% HA: ∼95% β-TCP. Micro-CT, histological analysis, and nanoindentation were conducted to determine the degree of new bone formation and remodeling. Results. Reconstructed microCT images show increased bone formation, remodeling, and integration in HA/ β -TCP-BMP scaffolds compared to virgin HA/ β -TCP scaffolds. Histological analysis showed increased bone formation but decreased
We have developed a new drug-delivery system using reconstituted bone xenograft to treat chronic osteomyelitis. This material, which has the capabilities of osteoinduction and
We have developed a new drug delivery system using porous apatite-wollastonite glass ceramic (A-W GC) to treat osteomyelitis. A-W GC (porosity, 70% and 20% to 30%), or porous hydroxyapatite (HA) blocks (porosity 35% to 48%) used as controls, were soaked in mixtures of two antibiotics, isepamicin sulphate (ISP) and cefmetazole (CMZ) under high vacuum. We evaluated the release concentrations of the antibiotics from the blocks. The bactericidal concentration of ISP from A-W GC was maintained for more than 42 days, but that from HA decreased to below the detection limit after 28 days. The concentrations of CMZ from both materials were lower than those of ISP. An in vivo study using rabbit femora showed that an osseous concentration of ISP was maintained at eight weeks after implantation.
Introduction. This study investigated the binding agent Calcium/Sodium Alginate fibre gel and the addition of autogenic bone marrow aspirate (BMA) on bone growth into a porous HA scaffold implanted in an ovine femoral condyle critical-sized defect. Our hypothesis was that Alginate fibre gel would have no negative effect on bone formation and
To explore the therapeutic potential of combining bone marrow-derived mesenchymal stem cells (BM-MSCs) and hydroxyapatite (HA) granules to treat nonunion of the long bone. Ten patients with an atrophic nonunion of a long bone fracture were selectively divided into two groups. Five subjects in the treatment group were treated with the combination of 15 million autologous BM-MSCs, 5g/cm3 (HA) granules and internal fixation. Control subjects were treated with iliac crest autograft, 5g/cm3 HA granules and internal fixation. The outcomes measured were post-operative pain (visual analogue scale), level of functionality (LEFS and DASH), and radiograph assessment.Objectives
Methods
Recent studies have shown that modulating inflammation-related
lipid signalling after a bone fracture can accelerate healing in
animal models. Specifically, decreasing 5-lipoxygenase (5-LO) activity
during fracture healing increases cyclooxygenase-2 (COX-2) expression
in the fracture callus, accelerates chondrogenesis and decreases
healing time. In this study, we test the hypothesis that 5-LO inhibition
will increase direct osteogenesis. Bilateral, unicortical femoral defects were used in rats to measure
the effects of local 5-LO inhibition on direct osteogenesis. The
defect sites were filled with a polycaprolactone (PCL) scaffold
containing 5-LO inhibitor (A-79175) at three dose levels, scaffold
with drug carrier, or scaffold only. Drug release was assessed Objectives
Methods
We have developed an animal model to examine the formation of heterotopic ossification using standardised muscular damage and implantation of a beta-tricalcium phosphate block into a hip capsulotomy wound in Wistar rats. The aim was to investigate how cells originating from drilled femoral canals and damaged muscles influence the formation of heterotopic bone. The femoral canal was either drilled or left untouched and a tricalcium phosphate block, immersed either in saline or a rhBMP-2 solution, was implanted. These implants were removed at three and 21 days after the operation and examined histologically, histomorphometrically and immunohistochemically. Bone formation was seen in all implants in rhBMP-2-immersed, whereas in those immersed in saline the process was minimal, irrespective of drilling of the femoral canals. Bone mineralisation was somewhat greater in the absence of drilling with a mean mineralised volume to mean total volume of 18.2% ( Our findings suggest that osteoinductive signalling is an early event in the formation of ectopic bone. If applicable to man the results indicate that careful tissue handling is more important than the prevention of the dissemination of bone cells in order to avoid heterotopic ossification.
An experimental sheep model was used for impaction allografting of 12 hemiarthroplasty femoral components placed into two equal-sized groups. In group 1, a 50:50 mixture of ApaPore hydroxyapatite bone-graft substitute and allograft was used. In group 2, ApaPore and allograft were mixed in a 90:10 ratio. Both groups were killed at six months. Ground reaction force results demonstrated no significant differences (p >
0.05) between the two groups at 8, 16 and 24 weeks post-operatively, and all animals remained active. The mean bone turnover rates were significantly greater in group 1, at 0.00206 mm/day, compared to group 2 at 0.0013 mm/day (p <
0.05). The results for the area of new bone formation demonstrated no significant differences (p >
0.05) between the two groups. No significant differences were found between the two groups in thickness of the cement mantle (p >
0.05) and percentage ApaPore-bone contact (p >
0.05). The results of this animal study demonstrated that a mixture of ApaPore allograft in a 90:10 ratio was comparable to using a 50:50 mixture.