Autologous
Articular cartilage is often damaged, and its treatment is usually performed by surgical operation. Today, tissue engineering offers an alternative treatment option for injuries or diseases with increasing importance. Infrapatellar fat pad (IPFP) is a densely vascularized and innervated extra synovial tissue that fills the anterior knee compartment. Adipose-derived stem cells from infrapatellar fat pad (IPFP-ASCs) have multipotency means that they can differentiate into connective tissue cells and have age-independent differentiation capacity as compared to other stem cells. In this study, the osteochondral tissue construct was designed with different inner pattern due to original osteochondral tissue structure and fabrication of it was carried out by 3D printing. For this purpose, alginate (3% w/v) and carboxymethylcellulose (CMC) (9%w /v) were used as bioink. Also, IPFP-ASCs were isolated with enzymatic degradation. Osteogenic and chondrogenic differentiation of IPFP-ASCs were investigated with Alizarin Red and Alcian Blue staining, respectively. IPFP-ASCs-laden
Background:. Full thickness cartilage defect of the knee frequently resulted in fibrous tissue formation, and larger lesions often lead to degenerative arthritis of the knee. Many techniques are designed to repair the cartilage defect including chondrocyte transplantation, microfracture and
We reviewed retrospectively 11 patients who had been treated surgically by open autologous
Twelve patients with an osteochondral lesion of the talus were treated with local
Introduction Twelve patients with an osteochondral lesion of the talus were treated with excision of the lesions and local
To assess the use of autogenous
Purpose: We report the results of a prospective consecutive series of 25 patient with non-degenerative chondral lesions treated by mosaicplasty
Measurement of precision in positioning multiple autologous osteochondral transplantation in comparison to the conventional free hand technique. The articular surfaces of 6 cadaveric condyles (medial – lateral) were used. The knee was referenced by a navigation system (Praxim). The pins carrying the navigation detectors were positioned to the femur and to the tibia. The grafts were taken from the donor side (measurement I) with the special instrument which carried the navigation detectors. The recipient site was prepared and the donor
We examined osteochondral autografts, obtained at a mean of 19.5 months (3 to 48) following extracorporeal irradiation and re-implantation to replace bone defects after removal of tumours. The specimens were obtained from six patients (mean age 13.3 years (10 to 18)) and consisted of articular cartilage (five), subchondral bone (five), external callus (one) and tendon (one). The tumour cells in the grafts were eradicated by a single radiation dose of 60 Gy. In three cartilage specimens, viable chondrocytes were detected. The survival of chondrocytes was confirmed with S-100 protein staining. Three specimens from the subchondral region and a tendon displayed features of regeneration. Callus was seen at the junction between host and irradiated bone.
Based on decellularisation and cleaning processes of trabecular bone and fibrocartilage, an osteochondral allograft has been developed. The chemical process, established thanks to bone and fibrocartilage data, included an efficient viroinactivation step. The raw material was a tibial plateau collected during knee arthroplasty, cut in cylinders strictly selected (>2mm cartilage height and total height between 10 and 16mm). The grafts were freeze-dried and gamma sterilised.Background
Material
Articular hyaline cartilage has a unique structural composition that allows it to endure high load, distribute load to bone and enables low friction movement in joints. A novel acellular xenogenic graft is proposed as a biological cartilage replacement, for repair of osteochondral defects. Acellular porcine cartilage has been produced using repeated freeze thaw cycles and washing using hypotonic buffers and sodium dodecyl sulphate solution (SDS; Keir, 2008). DNA content of the acellular matrix was reduced by 93.3% compared to native cartilage as measured by nanodrop spectrophotometry of extracted DNA, with a corresponding reduction in glycosaminoglycan (GAG) content. It was hypothesised that penetration of decellularisation solutions into the native tissue could be improved through deformation of the cartilage under confined compression and then allowing the osteochondral pin to recover in solution, allowing removal of cellular DNA and greater retention of the GAGs.Introduction
Hypothesis
Autologous osteochondral cylinder transfer is a treatment option for small articular defects, especially those arising from trauma or osteochondritis dissecans. There are concerns about graft integration and the nature of tissue forming the cartilage-cartilage bridge. Chondrocyte viability at graft and recipient edges is thought to be an important determinant of quality of repair. The aim was to evaluate cell viability at the graft edge from ex vivo human femoral condyles, after harvest using conventional technique. With ethical approval and patient consent, fresh human tissue was obtained at total knee arthroplasty. Osteochondral plugs were harvested using the commercially available Acufex 4.5mm diameter mosaicplasty osteotome from regions of the lateral femoral condyle (anterior cut) that were macroscopically non-degenerate and microscopically non-fibrillated. Plugs were assessed for chondrocyte viability at the graft edge using confocal laser scanning microscopy (CLSM), fluorescent indicators and image analysis. The central portions of the plugs remained healthy, with >
99% cell viability (n=5). However, there was substantial marginal cell death, of thickness 382 ± 68.2 microm in the superficial zone (SZ). Demi-plugs were created by splitting the mosaicplasty explants with a fresh No. 11 scalpel blade. The margin of SZ cell death was 390.3 ± 18.8 microm at the curved edge of the Acufex, significantly (Mann-Whitney; P= 0.0286; n =4) greater than that at the scalpel cut (34.8 ± 3.2 microm). Findings were similar when the cartilage was breached but the bone left intact. In time-course experiments, the SZ marginal zone of cell death after Acufex harvest showed no increase over the time period 15 minutes to 2 hours. Mathematical modelling of the mosaicplasty surface shows that cell death of this magnitude results in a disturbing 33% of the superficial graft area being non-viable. In conclusion, mosaicplasty, though capable of transposing viable hyaline cartilage, is associated with an extensive margin of cell death that is likely to compromise lateral integration. There would appear to be considerable scope for improvement of osteochondral transplant techniques which may improve graft-recipient healing and clinical outcomes.
Bone loss involving articular surface is a challenging
problem faced by the orthopaedic surgeon. In the hand and wrist,
there are articular defects that are amenable to autograft reconstruction
when primary fixation is not possible. In this article, the surgical
techniques and clinical outcomes of articular reconstructions in
the hand and wrist using non-vascularised osteochondral autografts
are reviewed.
Aims. The aims of this study were to analyse the long-term outcome
of vascularised fibular graft (VFG) reconstruction after tumour
resection and to evaluate the usefulness of the method. . Patients and Methods. We retrospectively reviewed 49 patients who had undergone resection
of a sarcoma and reconstruction using a VFG between 1988 and 2015.
Their mean follow-up was 98 months (5 to 317). Reconstruction was
with an
The clinical success of osteochondral autografts is heavily reliant on their mechanical stability, as grafts which protrude above or subside below the native cartilage can have a negative effect on the tribological properties of the joint [1]. Furthermore, high insertion forces have previously been shown to reduce chondrocyte viability [2]. Commercial grafting kits may include a dilation tool to increase the diameter of the recipient site prior to insertion. The aim of this study was to evaluate the influence of dilation on the primary stability of autografts. Six human cadaveric femurs were studied. For each femur, four 8.5 × 8mm autografts were harvested from the trochlear groove and implanted into the femoral condyles using a Smith & Nephew
Aims: In recent years more and more studies tried to evaluate possible inßuences of different growth factors on hyaline cartilage regeneration. In a rabbit model, HGF (hepatocyte growth factor) was proven to increase the amount of hyaline-like chondrocytes in a mixed þbrocartilaginous regenerate of small defects. The present study was undertaken to evaluate, whether intraarticular administration of hepatocyte growth factor inßuences the ingrowth of
The outcomes of various operative methods for osteochondritis dissecans of the femoral condyles were reviewed, and choice of these operative methods were discussed. Twenty-four cases (19 males and 5 females) which underwent operative treatments were reviewed. The operative methods included drilling, repositioning and fixation of the osteochodral fragment, and bone graft or
Shoulder arthritis in the young adult is a deceptive title. The literature is filled with articles that separate outcomes based on an arbitrary age threshold and attempt to provide recommendations for management and even potential criteria for implanting one strategy over another using age as the primary determinant. However, under the age of 50, as few as one out of five patients will have arthritis that can be accurately classified as osteoarthritis. Other conditions such as post-traumatic arthritis, post-surgical arthritis including capsulorrhaphy arthropathy, and rheumatoid arthritis create a mosaic of pathologic bone and soft tissue changes in our younger patients that distort the conclusions regarding “shoulder arthritis” in the young adult. In addition, we are now seeing more patients with unique conditions that are still poorly understood, including arthritis of the pharmacologically performance-enhanced shoulder. Early arthritis in the young adult is often recognised at the time of arthroscopic surgery performed for other preoperative indications. Palliative treatment is the first option, which equals “debridement.” If the procedure fails to resolve the symptoms, and the symptoms can be localised to an intra-articular source, then additional treatment options may include a variety of cartilage restoration procedures that have been developed primarily for the knee and then subsequently used in the shoulder, including microfracture, and