header advert
Results 1 - 20 of 143
Results per page:
Bone & Joint Open
Vol. 2, Issue 9 | Pages 721 - 727
1 Sep 2021
Zargaran A Zargaran D Trompeter AJ

Aims. Orthopaedic infection is a potentially serious complication of elective and emergency trauma and orthopaedic procedures, with a high associated burden of morbidity and cost. Optimization of vitamin D levels has been postulated to be beneficial in the prevention of orthopaedic infection. This study explores the role of vitamin D in orthopaedic infection through a systematic review of available evidence. Methods. A comprehensive search was conducted on databases including Medline and Embase, as well as grey literature such as Google Scholar and The World Health Organization Database. Pooled analysis with weighted means was undertaken. Results. Pooled analysis of four studies including 651 patients found the mean 25(OH)D level to be 50.7 nmol/l with a mean incidence of infection of 70%. There was a paucity of literature exploring prophylactic 25(OH)D supplementation on reducing orthopaedic infection, however, there was evidence of association between low 25(OH)D levels and increased incidence of orthopaedic infection. Conclusion. The results indicate a significant proportion of orthopaedic patients have low 25(OH]D levels, as well as an association between low 25(OH)D levels and orthopaedic infection, but more randomized controlled trials need to be conducted to establish the benefit of prophylactic supplementation and the optimum regimen by dose and time. Cite this article: Bone Jt Open 2021;2(9):721–727


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_22 | Pages 29 - 29
1 Dec 2017
Anderson R Bates-Powell J Cole C Kulkarni S Moore E Norrish A Nickerson E
Full Access

Aim. This study aimed to evaluate the impact on length of hospital stay from dedicated infectious diseases input for orthopaedic infection patients compared to sporadic infection specialist input. Method. We conducted an observational cohort study of 157 adults with orthopaedic infections at a teaching hospital in the UK. The orthopaedic infections included were: osteomyelitis, septic arthritis, infected metalwork and prosthetic joint infections, and adults were aged 18 years or more. Prior to August 2016, advice on orthopaedic infection patients was adhoc with input principally from the on-call infectious diseases registrar and phone calls to microbiology whereas after August 2016 these patients received regular input from dedicated infectious diseases doctor(s). The dedicated input involved bedside reviews, medical management, correct antimicrobial prescribing, managing adverse drug reactions, increased use of outpatient parenteral antimicrobial therapy (OPAT) services especially self-administration of intravenous antibiotics and shared decision-making for treatment failure, whilst remaining under orthopaedic team care. Orthopaedic patients operated on for management of their infection between 29/8/16 and 15/3/17 were prospectively identified and orthopaedic operation records were used to retrospectively identified patients between 29/8/15 and 15/3/16. The length of stay was compared between the 2 groups. Results. There were 83 patients in the dedicated infectious diseases input group (dedicated group) and 74 patients in the sporadic infection specialist input group (sporadic group). The dedicated group were significantly younger: median 58 years versus 69years (p<0.001), and there was a trend to significant differences in the breakdown of diagnosis (p=0.06), but no significant sex difference. The median length of stay for the sporadic group was 20 days (interquartile range (IQR) 13–29 days) compared to 14 days (IQR 9–27 days) for the dedicated group, with a trend to significance (p=0.06) but no effect from age or diagnosis. Our hospital values one day in hospital at £864, therefore over the 6.5 months trial period of the dedicated infectious diseases input there was a cost saving of £430,272 (£864 × 6 days × 83 patients). Conclusions. Dedicated infectious diseases input would be expected to improve patient care but by additionally reducing median length of stay for orthopaedic infection patients, this encourages investment to achieve both. In this era of increased scrutiny of health budgets demonstrating value for money, not just improved quality of patient care, is essential


The Bone & Joint Journal
Vol. 100-B, Issue 11 | Pages 1405 - 1406
1 Nov 2018
Haddad FS Oussedik S Meek RMD Konan S Stockley I Gant V


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_23 | Pages 32 - 32
1 Dec 2016
Cleaver L Gorton R Gandy M Palanivel S Mack D Warren S
Full Access

Aim. Diagnosing Orthopaedic infection is limited by the sensitivity of culture methods. Next generation sequencing (NGS) offers an alternative approach for detection of microorganisms from clinical specimens. However, the low ratio of pathogen DNA to human DNA often inhibits detection of microorganisms from specimens. Depletion of human DNA may enhance the detection of microbial DNA. 1. Our aim was to compare four DNA extraction methods for the recovery of microbial DNA from orthopaedic samples for NGS. Method. Simulated samples; pooled culture negative sample matrix was spiked with known concentrations of microorganisms, each panel consisting of 7 samples. Broth culture was performed on simulated samples for comparison with NGS. *. . DNA Extraction; total nucleic acid extraction was performed on an automated extraction platform. **. using the viral NA assay. Modifications included: (1) mechanical lysis (glass beads), (2) lysis of human cells (saponin 0.025%), turbo DNase treatment and (3) mechanical lysis and addition of MspJI enzyme post-extraction for methylated DNA digestion. Detection of human and microbial DNA; human endogenous (HE) gene rtPCR. ***. was utilised following manufacturer's recommendations. Microbial DNA was detected using SYBR green 16s ribosomal RNA rtPCR with high resolution melt-curve analysis. ****. . Results. Broth culture recovered 64% (9/14) of the microorganisms from simulated samples. A significant increase (p<0.01) in the cycle threshold (C. T. ) (median C. T. 25.9 IQR 25.5, 26.1) of the HE gene rtPCR was observed using extraction method b, indicating a significant reduction in human DNA. No significant change (p=0.38) in the C. T. of the HE gene rtPCR was observed between the baseline method (median C. T. 19.2 IQR 18.5, 19.7) and modifications a (median C. T. 18.4 IQR 18.2, 19.4) and c (median C. T. 19.3 IQR 18.6, 19.4). Detection of microbial DNA was successful using the base line extraction method and modification a. Microbial DNA was not detected using the 16s ribosomal RNA rtPCR for modifications b and c. Conclusions. This study has demonstrated that modification of DNA extraction methods using selective enzymatic digestion of human DNA negatively impacts on the recovery of microbial DNA from simulated specimens. Total DNA extraction allows the successful recovery of microbial DNA alongside a significant amount of human DNA. The effect of the presence of human DNA will be subsequently assessed through NGS CosmosID analysis to establish if NGS is more sensitive than broth based culture


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_2 | Pages 18 - 18
10 Feb 2023
Foster A Boot W Stenger V D'Este M Jaiprakash A Crawford R Schuetz M Eglin D Zeiter S Richards R Moriarty T
Full Access

Local antimicrobial therapy is an integral aspect of treating orthopaedic device related infection (ODRI), which is conventionally administered via polymethylmethacrylate (PMMA) bone cement. PMMA, however, is limited by a suboptimal antibiotic release profile and a lack of biodegradability.

In this study, we compare the efficacy of PMMA versus an antibioticloaded hydrogel in a single- stage revision for chronic methicillin-resistant Staphylococcus aureus (MRSA) ODRI in

sheep. Antibiofilm activity of the antibiotic combination (gentamicin and vancomycin) was determined in vitro. Swiss alpine sheep underwent a single-stage revision of a tibial intramedullary nail with MRSA infection. Local gentamicin and vancomycin therapy was delivered via hydrogel or PMMA (n = 5 per group), in conjunction with systemic antibiotic therapy. In vivo observations included: local antibiotic tissue concentration, renal and liver function tests, and quantitative microbiology on tissues and hardware post-mortem.

There was a nonsignificant reduction in biofilm with an increasing antibiotic concentration in vitro (p = 0.12), confirming the antibiotic tolerance of the MRSA biofilm. In the in vivo study, four out of five sheep from each treatment group were culture negative. Antibiotic delivery via hydrogel resulted in 10–100 times greater local concentrations for the first 2–3 days compared with PMMA and were comparable thereafter. Systemic concentrations of gentamicin were minimal or undetectable in both groups, while renal and liver function tests were within normal limits.

This study shows that a single-stage revision with hydrogel or PMMA is equally effective, although the hydrogel offers certain practical benefits over PMMA, which make it an attractive proposition for clinical use.


Orthopaedic Proceedings
Vol. 87-B, Issue SUPP_III | Pages 303 - 304
1 Sep 2005
Jarvis A Semple G
Full Access

Introduction and Aim: In 1995, sterile maggots (blow fly larvae) became available commercially for the first time since the mid-1930s. We have used them in managing ‘problem wounds’ in an orthopaedic unit. We have re-assessed the value of maggot debridement therapy (MDT) in present-day orthopaedics.

Method and Results: To date 95 patients have been treated. (Average age 62; range 16–91). Eighty-five percent of cases involved the lower limb. The remainder were upper limb, apart from one spinal lesion and one sacral sore. Twenty percent of patients had diabetes; six amputation stumps were treated. In 60% of cases a single application was used, the larvae being left in-situ for three to five days. Some wounds required up to three applications. The dressing technique is easily learnt and is ideal for outpatient clinics. The most appropriate wounds are those with a wide opening, extensive slough, and natural drainage. The greatest benefit follows infection with gram-positive cocci, and anaerobes. In eight cases, MRSA infection was cured or controlled.

Larvae provide optimal wound healing conditions, by literally eating pus and bacteria, and also by stimulating granulation tissue to form. However, they cannot produce wound healing if a major sequestrum or implant is present. In general, patient acceptance was good, but five patients requested early removal of maggots. Since 2001, the maggots have been available in sachet form (the so-called ‘Bio-bag’) and this packaged application has made the treatment more readily acceptable, and easier.

Overall we judged that MDT had produced healing or improvement in 80% of infected wounds. Unusual wounds, such as animal bites, a sea -urchin lesion, and infected gout produced some of the most striking cures.

Conclusion: Maggot therapy uniquely minimises both the need for surgical debridement and antibiotics. We therefore recommend its continued use.


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_7 | Pages 7 - 7
1 May 2019
Turnbull G Ning E Faulds K Riches P Shu W Picard F Clarke J
Full Access

Antimicrobial resistance (AMR) is projected to result in 10 million deaths every year globally by 2050. Without urgent action, routine orthopaedic operations could become high risk and musculoskeletal infections incurable in a “post-antibiotic era.” However, current methods of studying AMR processes including bacterial biofilm formation are 2D in nature, and therefore unable to recapitulate the 3D processes within in vivo infection.

Within this study, 3D printing was applied for the first time alongside a custom-developed bioink to bioprint 3D bacterial biofilm constructs from clinically relevant species including Staphylococcus aureus (MSSA), Methicillin-resistant staphylococcus aureus (MRSA), Escherichia coli and Pseudomonas aeruginosa. Bacterial viability and biofilm formation in bioprinted constructs was excellent, with confocal laser scanning microscopy (CSLM) used to demonstrate biofilm production and maturation over 28 days. Bioprinted 3D MRSA and MSSA biofilm constructs had greater resistance to antimicrobials than corresponding two-dimensional (2D) cultures. Thicker 3D E.coli biofilms had greater resistance to tetracycline than thinner constructs over 7 days of treatment. Raman spectroscopy was also adapted in a novel approach to non-invasively diagnose 3D bioprinted biofilm constructs located within a joint replacement model.

In conclusion, mature bacterial biofilm constructs were reproducibly 3D bioprinted for the first time using clinically relevant bacteria. This methodology allows the study of antimicrobial biofilm penetration in 3D, and potentially aids future antimicrobial research, replicating joint infection more closely than current 2D culture models. Furthermore, by deploying Raman spectroscopy in a novel fashion, it was possible to diagnose 3D bioprinted biofilm infections within a joint replacement model.


Orthopaedic Proceedings
Vol. 87-B, Issue SUPP_III | Pages 303 - 303
1 Sep 2005
Edwards C Hill P Scammell B Bayston R
Full Access

Introduction and Aims: A phenotypic and proteomic approach has identified novel targets for the development of a DNA vaccine to prevent Staphylococcus aureus infection in orthopaedics. Approximately 1% of joint replacement operations are complicated by infection. Thirty percent of these infections are due to S.aureus, which is often difficult to treat because of antibiotic resistance. As treatment of these infections is challenging, prevention with a vaccine is a very attractive option. Method: To infect a joint replacement, bacteria must first adhere to its surface. This adherence is mediated by specific adhesion proteins; the expression of which is controlled by virulence regulator genes within the bacterial cell. A DNA vaccine is being developed which targets this regulatory apparatus, thus preventing bacterial adhesion, allowing the immune system to rapidly clear any potential S.aureus infection. Results: Mutations of the agr,sar and sae virulence regulator genes have been made. Their properties have been explored using a flow cell system, which uses a scanning confocal laser microscope and image analysis software to accurately provide quantitative data in real-time of biofilm formation. We have shown that the sae mutant does not form biofilm in the same was as wild-type S.aureus. We have also shown that it does not adhere to steel as well as its wild-type counterpart. Conclusion: For such a dramatic difference in biofilm forming properties to be evident, there must be a difference in the adhesion proteins produced by the wild-type and the mutant bacteria. Gel-electrophoresis has compared protein expression of sae mutant and wild-type bacteria and identified differences. Those proteins which are not expressed in the non-biofilm-forming mutant are sequenced and from the protein sequences, DNA sequences are identified that will form part of the candidate DNA vaccine


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXI | Pages 154 - 154
1 May 2012
S. S P. K M. U
Full Access

Background

Staphylococcus epidermidis is one of the main organisms associated with prosthetic joint infections. One of the major pathogenic attributes of this organism is the ability to form biofilms, making it extremely resistant to currently available antimicrobial therapies. There is, therefore, an urgent requirement for novel agents that are effective against this organism. Antimicrobial peptides represent a novel group of agents that show good activity towards biofilm-forming S. epidermidis. Antimicrobial peptides are particularly interesting due to their multiple modes of action which are thought to reduce the rate of resistance development to the agents.

Aim

The aim of the current study was to assess the effect of antimicrobial peptides gallidermin and novel peptide NI01 on the growth of reference and clinical isolates of S. epidermidis on polymethylmethacrylate (PMMA) cement following incorporation of the peptides.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_9 | Pages 10 - 10
17 Apr 2023
Constant C Moriarty T Pugliese B Arens D Zeiter S
Full Access

Orthopedic device-related infection (ODRI) preclinical models are widely used in translational research. Most models require induction of general anesthesia, which frequently results in hypothermia in rodents. This study aimed to evaluate the impact of peri anesthetic hypothermia in rodents on outcomes in preclinical orthopedic device-related infection studies. A retrospective analysis of all rodents that underwent surgery under general anesthesia to induce an ODRI model with inoculation of Staphylococcus epidermidis between 2016 and 2020 was conducted. A one-way multivariate analysis of covariance was used to determine the fixed effect of peri anesthetic hypothermia (hypothermic defined as rectal temperature <35°C) on the combined harvested tissue and implant colonies forming unit counts, and having controlled for the study groups including treatments received duration of surgery and anesthesia and study period. All animal experiments were approved by relevant ethical committee. A total of 127 rodents (102 rats and 25 mice) were enrolled in an ODRI and met the inclusion criteria. The mean lowest peri-anesthetic temperature was 35.3 ± 1.5 °C. The overall incidence of peri-anesthetic hypothermia was 41% and was less frequently reported in rats (34% in rats versus 68% in mice). Statistical analysis showed a significant effect of peri anesthetic hypothermia on the post-mortem combined colonies forming unit counts from the harvested tissue and implant(s) (p=0.01) when comparing normo- versus hypothermic rodents. Using Wilks’ Λ as a criterion to determine the contribution of independent variables to the model, peri-anesthetic hypothermia was the most significant, though still a weak predictor, of increased harvested colonies forming unit counts. Altogether, the data corroborate the concept that bacterial colonization is affected by abnormal body temperature during general anesthesia at the time of bacterial inoculation in rodents, which needs to be taken into consideration to decrease infection data variability and improve experimental reproducibility


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_16 | Pages 23 - 23
1 Oct 2016
Hansom D Ramage G Burgess K Gadengaard N Millar N Clarke J
Full Access

One of the most common bacteria in orthopaedic prosthetic infections is Staphylococcus Aureus. Infection causes implant failure due to biofilm production. Biofilms are produced by bacteria once they have adhered to a surface. Nanotopography has major effects on cell behaviour. Our research focuses on bacterial adhesion on nanofabricated materials. We hypothesise that surface nanotopography impacts the differential ability of staphylococci species to adhere via altered metabolomics and may reduce orthopaedic implant infection rate. Bacteria were grown and growth conditions optimised. Polystyrene and titanium (Ti) nanosurfaces were studied. The polystyrene surfaces had different nanopit arrays, while the Ti surfaces expressed different nanowire structures. Adhesion analysis was performed using fluorescence imaging, quantitative PCR and bacterial percentage coverage calculations. Further substitution with ‘heavy’ labelled glucose into growth medium allowed for bacterial metabolomic analysis and identification of any up-regulated metabolites and pathways. Our data demonstrates reduced bacterial adhesion on specific nanopit polystyrene arrays, while nanowired titanium showed increased bacterial adhesion following qPCR (P<0.05) and percentage coverage calculations (P<0.001). Further metabolomic analysis identified significantly increased intensity counts of specific metabolites (Pyruvate, Aspartate, Alanine and Carbamoyl aspartate). Our study shows that by altering nanotopography, bacterial adhesion and therefore biofilm formation can be affected. Specific nanopatterned surfaces may reduce implant infection associated morbidity and mortality. The identification of metabolic pathways involved in adhesion may allow for a targeted approach to biofilm eradication in S. aureus. This is of significant benefit to both the patient and the surgeon, and may well extend far beyond the realms of orthopaedics


Orthopaedic Proceedings
Vol. 97-B, Issue SUPP_3 | Pages 2 - 2
1 Apr 2015
Hansom D Ramage G Burgess K Gadengaard N Millar N Clarke J
Full Access

The most common bacteria in orthopaedic prosthetic infections are Staphylococcus, namely Staphylococcus Epidermidis (SE) and Staphylococcus Aureus (SA). Infection causes implant failure due to biofilm production. Biofilms are produced by bacteria once they have adhered to a surface. Nanotopography has major effects on cell behaviour. Our research focuses on bacterial adhesion and biofilm formation on nanofabricated materials. Bacteria studied were clinically relevant from an orthopaedic perspective, SA and SE. We hypothesise that that nanosurfaces can modulate bacterial adherence and biofilm formation and may reduce orthopaedic implant infection rate. Isolated bacteria were grown and growth conditions optimised. Bacterial concentrations were calculated by using qPCR. Statistical analysis allowed identification of optimal biofilm growth conditions. These were refined on standard, non-nanopatterned surfaces, and then control and nanopatterned polystyrene (nanopits) and titanium plates (nanowires). Adhesion analysis was performed using fluorescence imaging and quantitative PCR. 4 bacterial strains were isolated and cultured. Growth kinetics based on 24hr cultures allowed isolation of optimal media for biofilm conditions (Dulbecco's Modified Eagle Medium with additional supplements). Highest bacterial concentrations were found following 2hrs incubation with Lysozyme during qPCR. Bacterial concentration significantly increased between 30, 60 and 90 minutes incubation. Differences in percentage coverage on different polysyrene nanosurfaces (nanopits) were noted varying. This was confirmed by qPCR extractions that showed different bacterial concentrations on different nanopatterns. Titanium nanowire surfaces significantly increased bacterial adhesion (P<0.05). Our study cultured and quantified bacterial biofilm and suggests that by altering nanotopography, bacterial adhesion and therefore biofilm formation can be affected. Specific nanopatterned surfaces may reduce implant infection associated morbidity and mortality. Clearly this is of significant benefit to the patient, the surgeon and the NHS, and may well extend far beyond the realms of orthopaedics


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_17 | Pages 31 - 31
24 Nov 2023
Mdingi V Gens L Mys K Zeiter S Marais L Richards G Moriarty F Chitto M
Full Access

Aim. In this study we investigated the effects of non-steroidal anti-inflammatory drugs (NSAIDs) with different cyclooxygenase (COX) selectivity on orthopaedic device-related infections (ODRIs) in a rat model. Specifically, we aimed to measure the impact of NSAID therapy on bone changes, bacterial load, and cytokine levels after treatment with antibiotics. In addition, we compared the effects of long vs short-term celecoxib (a COX-2 inhibitor) treatment on the same outcomes. Method. Skeletally mature female Wistar rats were implanted with Staphylococcus epidermidis-contaminated polyetheretherketone (PEEK) screws (1.5 × 10. 6. CFU per screw) in the proximal right tibia and monitored for 7 days. All animals received subcutaneous antibiotics (rifampicin plus cefazolin) for two weeks from day 7 to 21. In phase I of the study, rats were randomly assigned to receive 28 days of oral treatment with acetylsalicylic acid, ibuprofen, celecoxib, or vehicle control. In phase II, an additional group received seven days of celecoxib treatment from day 0 to 7. After implantation, bone changes were monitored using in vivo micro-CT and histology. Quantitative bacteriology was performed at euthanasia. Plasma samples were collected to measure cytokine levels at four time points (day 0, 6, 20, and 28). Results. The combination of antibiotic therapy resulted in treatment success in 85.71% of cases, while the addition of long-term celecoxib treatment reduced it to 45.45%. Long-term celecoxib treatment significantly reduced bone loss (33.85% mean difference [95% CI 14.12–53.58], p=0.0004 on day 6 bone fraction) and periosteal reaction (0.2760 μm mean difference [95% CI 0.2073–0.3448], p<0.0001 on day 14 periosteal thickness) during the early post-infection period compared to the control group. Short-term celecoxib treatment showed similar radiological results, however, there was no significant reduction in treatment success in the celecoxib group (88.9%). No differences in the selected inflammatory markers were observed. Conclusion. Our findings highlight the potential benefits of short-term use of celecoxib in improving bone fraction during the early post-infection period without impairing the efficacy of antibiotic therapy. This study suggests that celecoxib may be a useful addition to the multimodal approach to pain management in orthopaedic device-related infections


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_22 | Pages 101 - 101
1 Dec 2017
Street T Sanderson N Atkins B Brent A Cole K Foster D McNally M Oakley S Peto L Taylor A Peto T Crook D Eyre D
Full Access

Aim. Culture of multiple periprosthetic tissue samples is the current gold-standard for microbiological diagnosis of prosthetic joint infections (PJI). Additional diagnostic information may be obtained through sonication fluid culture of explants. These current techniques can have relatively low sensitivity, with prior antimicrobial therapy or infection by fastidious organisms particularly influencing culture results. Metagenomic sequencing has demonstrated potential as a tool for diagnosis of bacterial, viral and parasitic infections directly from clinical samples, without the need for an initial culture step. We assessed whether metagenomic sequencing of DNA extracts from sonication fluid can provide a sensitive tool for diagnosis of PJI compared to sonication fluid culture. Method. We compared metagenomic sequencing with standard aerobic and anaerobic culture in 97 sonication fluid samples from prosthetic joint and other orthopaedic device-related infections. Sonication fluids were filtered to remove whole human cells and tissue debris, then bacterial cells were mechanically lysed before DNA extraction. DNA was sequenced and sequencing reads were taxonomically classified using Kraken. Using 50 derivation samples, we determined optimal thresholds for the number and proportion of bacterial reads required to identify an infection and confirmed our findings in 47 independent validation samples. Results. A total of 131 sonication fluids were aerobically and anaerobically cultured and underwent metagenomic sequencing. From the first 72 sonication fluid samples sequenced 22 samples from six batches were excluded, as these samples and negative controls from the same batches showed similar contamination. The remaining 50 samples, the derivation set, were used to determine optimal sequence thresholds for identifying true infection. Of 59 subsequently sequenced validation samples, 12 from a single batch were excluded as the negative control was contaminated with Propionibacterium acnes, leaving 47 validation samples. Compared to sonication fluid culture, the species-level sensitivity of metagenomic sequencing was 61/69(88%,95%CI 77–94%)(derivation samples 35/38[92%,79–98%]; validation samples 26/31[84%,66–95%]), and genus-level sensitivity was 64/69(93%,84–98%). Species-level specificity, adjusting for plausible fastidious causes of infection, species found in concurrently obtained tissue samples, and prior antibiotics, was 85/97(88%,79–93%)(derivation 43/50[86%,73–94%], validation 42/47[89%,77–96%]). High levels of human DNA contamination were seen despite use of laboratory methods to remove it. Conclusions. We demonstrate as a proof of principle that metagenomic sequencing can provide accurate diagnostic information in PJI. Further depletion of human DNA will lead to improved genomic information on the cause of infection, strengthening the case for metagenomic sequencing as a diagnostic tool in PJI


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_14 | Pages 4 - 4
1 Dec 2019
Suda A Landua N Miethke T
Full Access

Aim. Diagnostics of orthopedic implant infection remains challenging and often shows false negative or inadequate results. Several methods have been described to improve diagnostic methods but most of them are expensive (PCR) or not accessible for all hospitals (sonication). Aim of this study was to evaluate the results of incubation of orthopedic explants compared to biopsies and punction fluid using conventional microbiological methods. Method. In this prospective study, we included patients who received septic or aseptic orthopedic implant removal in a single University hospital between July and December 2018. A part of the explant as well as minimum 2 tissue biopsies or additional punction fluid were put in a bouillon and incubated for 11 days. Patient´s records with co-morbidities, use of antibiotics and demographic data were evaluated. The results were analyzed. The study was approved by the ethical committee. Results. 94 patients were included in this study (43 females, 51 males, mean age 54 years). We detected statistically significant more pathogens in the bouillon with explants compared to biopsies (p=0,0059). We found the same results with pedicle screws (n=11, p=0,039) and endoprosthesis (n=56, p=0,019). Patients after osteosynthesis (p=27) showed same results but statistically not significant (p=0,050). Use of antibiotics did not have influence on the diagnostic result as well as co-morbidities. In 38 patients (40,4%), additional bacteria could be detected in explant´s bouillon. Most common pathogens were Staph. aureus, E. faecalis, Staph. epidermidis and Micrococcus luteus, mixed infections could be found in 9%. Conclusions. In this study we could show that incubation of orthopedic implants has advantages in diagnostics of pathogens in infected endoprosthesis, osteosynthesis and spondylodesis. This method is simple compared to PCR or sonication and as cheap as incubation of tissue samples but in 40% of the cases, additional pathogens can be detected. We recommend to incubate removed screws, hip endoprosthetic heads or inlays in bouillon to optimize diagnostics and to detect all pathogens


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_17 | Pages 27 - 27
1 Dec 2018
Bandeira R de C. Melo M Costa LR Cruz VD Mello MA de A. C. Tadeu H Silva RM Salles M
Full Access

Aim. Orthopedic implant related surgical site infection (SSI) is a severe complication which represents an important challenge concerning to its treatment. Therefore, gram-negative orthopedic infections have recently become a global concern. Method. Retrospective study through searching of the SCIH (infection control service) database, concerning to the year 2016 and 2017. Cases selected were those of implant placement clean surgeries (osteosynthesis or prosthetic placement) which evolved with SSI and Gram-negative bacterial growth in bone tissue or periprosthetic cultures. Results. During 2016 and 2017, 6150 clean surgeries with orthopedic implant placement were performed; 140 fulfilled SSI criteria (83 cases of open fracture reduction, 44 of hip arthroplasty, 13 of knee arthroplasty). Main agent of infections was Staphylococcus aureus (32,47%) mostly of them methicillin-sensitive (69,20%). However, Gram-negative bacteria were responsible for 64,95% of infections. (Klebsiella pneumoniae 12.8%; Acinetobacter baumannii and Enterobacter ssp 11.96%; Pseudomonas aeruginosa 9.40%) Among them, 100% Enterobacter ssp. were sensitive to carbapenems and 75% to ciprofloxacin. Klebsiella pneumoniae showed sensitivity to carbapenems in 85.7%, Pseudomonas aeruginosa showed sensitivity in 85.7% to carbapenems and 100% to ciprofloxacin. Acinetobacter baumannii showed the least favorable profile amongst Gram-negatives since only 12.5% of strains were sensitive to carbapenems, 28.6% to Ampicilin-sulbactam, 22.2% to ciprofloxacin, while showing 100% sensitivity to polymyxins. 14 patients in whom Acinetobacter baumannii was isolated were predominantly elderly (median 70 years), most of them have underlying/chronic diseases (71.42%) such as diabetes, arterial hypertension, alcoholism, smoking and heart failure. None presented sepsis related to this infection, but four of them died as result of hospitalization related complications (28,60% mortality rate). Among these deaths, 3 were related to total hip arthroplasty, and one to knee arthroplasty. One patient died as result of external causes. Among the survivors, five showed remission/cure. The follow up was lost in 4 patients. Conclusions. SSI caused by carbepenem-resistant Acinetobacter baumannii represents considerable impact on morbi-mortality in patients who undergo surgery with placement of orthopedic implants


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_15 | Pages 30 - 30
7 Nov 2023
Mdingi V Marais L Gens L Mys K Zeiter S Richards G Moriarty F Chittò M
Full Access

We investigated the effects of non-steroidal anti-inflammatory drugs (NSAIDs) with different cyclooxygenase (COX) selectivity on orthopaedic device-related infections (ODRIs) in a rat model. We aimed to measure the impact of NSAID therapy on bone changes, bacterial load, and cytokine levels after treatment with antibiotics. We also compared the effects of long vs short-term celecoxib (a COX-2 inhibitor) treatment on the same outcomes. Skeletally mature female Wistar rats were implanted with Staphylococcus epidermidis- contaminated polyetheretherketone (PEEK) screws in the proximal right tibia and monitored for 7 days. All animals received subcutaneous antibiotics (rifampicin plus cefazolin) for two weeks from day 7 to 21. In phase I of the study, rats were randomly assigned to receive 28 days of oral treatment with acetylsalicylic acid, ibuprofen, celecoxib, or vehicle control. In phase II, an additional group received seven days of celecoxib treatment from day 0 to 7. Bone changes were monitored using in vivo micro-CT and histology. Quantitative bacteriology was performed at euthanasia. Plasma samples were collected to measure cytokine levels on days 0, 6, 20, and 28. Combination antibiotic therapy resulted in treatment success in 85.71% of cases, while the addition of long-term celecoxib treatment reduced it to 45.45%. Long-term celecoxib treatment significantly reduced bone loss (33.85% mean difference [95% CI 14.12–53.58], p=0.0004 on day 6 bone fraction) and periosteal reaction (0.2760 μm mean difference [95% CI 0.2073–0.3448], p<0.0001 on day 14 periosteal thickness) during early infection compared to the control group. Short- term celecoxib treatment showed similar radiological results without a reduction in treatment success (88.9%). No differences in the inflammatory markers were observed. Our findings highlight the potential benefits of short-term use of celecoxib in improving bone fraction during the early post-infection period without impairing the efficacy of antibiotic therapy


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_14 | Pages 87 - 87
1 Dec 2019
Burch MA Thompson K Eberli U Arens D Milstrey A Stadelmann V Richards G Moriarty F
Full Access

Aim. Non-steroidal anti-inflammatory drugs (NSAIDs) are a cornerstone of perioperative pain management in orthopedic trauma surgery, although concerns persist regarding the potential impact of these drugs on fracture healing. Furthermore, NSAIDs may also exert an influence on host immune defenses, which may also be important in the context of infection treatment. However, this has been very much under-investigated in the clinical and scientific literature. The aim of this study was to determine the impact of NSAIDs on the course of an orthopedic device-related infection (ODRI) and its response to antibiotic therapy in a rat model. Method. A polyetheretherketone (PEEK) screw was inserted in the proximal tibia of 48 skeletally mature female Wistar rats: 12 control animals received a sterile screw, of which 6 also received NSAID therapy (carprofen, 5 mg/kg s.c. once daily); 36 rats received a Staphylococcus epidermidis-inoculated screw, of which 18 received NSAID therapy. Antibiotic therapy was administered from day 7–21 in 9 animals from all groups receiving S. epidermidis-inoculated screws (cefazolin: 30 mg/kg; s.c., b.i.d. plus rifampin: 25 mg/kg; s.c., b.i.d.). Bone histomorphometric changes were monitored using longitudinal microCT scanning, performed postoperatively, and at 3, 6, 9, 14, 20 and 28 days (euthanasia). Quantitative bacteriology of the implant, bone and overlying soft tissue was performed to assess infection status of individual animals. Results. All animals receiving S. epidermidis-inoculated screws in the absence of antibiotic therapy were confirmed as infected at euthanasia. Quantitative microbiology showed no significant change in bacterial load in NSAID-treated animals versus control. However, NSAID administration dramatically impaired antibiotic efficacy, with 7/8 animals remaining infected when NSAIDs were co-administered, whilst only 2/9 of control animals were infected when NSAIDs were withheld. Pronounced osteolysis was observed by day 6–9 in control animals, with reparative processes (periosteal proliferation and mineralization) observed at day 14. NSAID treatment markedly prevented S. epidermidis-induced osteolysis, but also reparative processes. Antibiotic treatment did not affect the bone changes. Conclusions. NSAID administration dramatically affected the response of bone tissue to infection, reducing osteolysis but also impairing reparative processes. Crucially, NSAIDs dramatically reduced antibiotic efficacy. Given these pronounced negative effects, further investigations should be conducted to determine the underlying pathophysiological mechanism and better understand the consequences of the therapeutic use of NSAIDs in human patients with ODRI


Orthopaedic Proceedings
Vol. 97-B, Issue SUPP_16 | Pages 37 - 37
1 Dec 2015
Brent A Barrett L Dudareva M Figtree M Colledge R Newnham R Bejon P Mcnally M Taylor A Atkins B
Full Access

Collection of 4–5 independent peri-prosthetic tissue samples is recommended for microbiological diagnosis of prosthetic joint infections. Sonication of explanted prostheses has also been shown to increase microbiological yield in some centres. We compared sonication with standard tissue sampling for diagnosis of prosthetic joint and other orthopaedic device related infections. We used standard protocols for sample collection, tissue culture and sonication. Positive tissue culture was defined as isolation of a phenotypically indistinguishable organism from ≥2 samples; and positive sonication culture as isolation of an organism at ≥50 cfu/ml. We compared the diagnostic performance of each method against an established clinical definition of infection (Trampuz 2011), and against a composite clinical and microbiological definition of infection based on international consensus (Gehrke & Parvizi 2013). 350 specimens were received for sonication, including joint prostheses (160), exchangeable components (76), other orthopaedic hardware and cement (104), and bone (10). A median of 5 peri-prosthetic tissue samples were received from each procedure (IQR 4–5). Tissue culture was more sensitive than sonication for diagnosis of prosthetic joint and orthopaedic device related infection using both the clinical definition (66% versus 57%, McNemar's Χ2 test p=0.016) and the composite definition of infection (87% vs 66%, p<0.001). The combination of tissue culture and sonication provided optimum sensitivity: 73% (95% confidence interval 65–79%) against the clinical definition and 92% (86–96%) against the composite definition. Results were similar when analysis was confined to joint prostheses and exchangeable components; other orthopaedic hardware; and patients who had received antibiotics within 14 days prior to surgery. Tissue sampling appears to have higher sensitivity than sonication for diagnosis of prosthetic joint and orthopaedic device infection at our centre. This may reflect rigorous collection of multiple peri-prosthetic tissue samples. A combination of methods may offer optimal sensitivity, reflecting the anatomical and biological spectrum of prosthetic joint and other device related infections


The Bone & Joint Journal
Vol. 104-B, Issue 6 | Pages 696 - 702
1 Jun 2022
Kvarda P Puelacher C Clauss M Kuehl R Gerhard H Mueller C Morgenstern M

Aims

Periprosthetic joint infections (PJIs) and fracture-related infections (FRIs) are associated with a significant risk of adverse events. However, there is a paucity of data on cardiac complications following revision surgery for PJI and FRI and how they impact overall mortality. Therefore, this study aimed to investigate the risk of perioperative myocardial injury (PMI) and mortality in this patient cohort.

Methods

We prospectively included consecutive patients at high cardiovascular risk (defined as age ≥ 45 years with pre-existing coronary, peripheral, or cerebrovascular artery disease, or any patient aged ≥ 65 years, plus a postoperative hospital stay of > 24 hours) undergoing septic or aseptic major orthopaedic surgery between July 2014 and October 2016. All patients received a systematic screening to reliably detect PMI, using serial measurements of high-sensitivity cardiac troponin T. All-cause mortality was assessed at one year. Multivariable logistic regression models were applied to compare incidence of PMI and mortality between patients undergoing septic revision surgery for PJI or FRI, and patients receiving aseptic major bone and joint surgery.