RNA-Seq or whole transcriptome shotgun sequencing has been adopted in the last years as a reference technique to determine the presence and the quantity of different species of RNA in determined biological samples, thanks to it allows the identification every single RNA species transcribed from a reference genome. Meta-profiling takes advantage of the public availability of an increasing set of RNA-Seq data produced by different laboratories to summarize the expression levels of the different RNA species of many samples according to their biological context, giving the opportunity to perform comparisons on the gene expression profiles of different tissues by integrating data derived from a high number of studies. By using Genevestigator™; a platform which integrates RNA-Seq data into meta-profiles, we have performed a comparison between the gene expression profiles of bone, cartilage, muscle tendon and skin by means of interrogating its database with different gene sets and families with relevance to the function of the tissues of the
Osteoarthritis is the most prevalent joint disease, causing severe pain, deformity and a loss of mobility. Low back pain (LBP), frequently associated with degeneration of the intervertebral disc (IVD), is the No.1 cause of Years Lived with Disability. Age is a major risk factor for both conditions. However, the reasons why susceptibility to these conditions increases with age are poorly understood. The circadian (24 hourly) clocks in the brain and periphery direct key aspects of physiology through rhythmic control of tissue-specific sets of downstream genes. Work from our group focuses on the roles of circadian clocks in the articular cartilage and IVD. We show that the daily rhythm in these tissues becomes dampened and out-of-phase during ageing. Further, our data identify circadian clock disruption in cartilage and IVD as a new target of inflammation. Moreover, we show that mice with targeted knockout of an essential clock gene (BMAL1) in chondrocytes and disc cells have profound, yet tissue-specific degeneration in the articular cartilage and IVD. These findings implicate the local skeletal clock as a key regulatory mechanism for tissue homeostasis. This new avenue of research holds potential to better understand, and eventually treat these debilitating conditions.
Imaging can provide valuable information about the function of tissues and organs. The capacity for detecting and measuring imaging biomarkers of biological activities, allows for a better understanding of the pathophysiology of any process in the human body, including the
Our
Osteotomies in the
Geometric deep learning is a relatively new field that combines the principles of deep learning with techniques from geometry and topology to analyze data with complex structures, such as graphs and manifolds. In orthopedic research, geometric deep learning has been applied to a variety of tasks, including the analysis of imaging data to detect and classify abnormalities, the prediction of patient outcomes following surgical interventions, and the identification of risk factors for degenerative joint disease. This review aims to summarize the current state of the field and highlight the key findings and applications of geometric deep learning in orthopedic research. The review also discusses the potential benefits and limitations of these approaches and identifies areas for future research. Overall, the use of geometric deep learning in orthopedic research has the potential to greatly advance our understanding of the
Non-linear methods in statistical shape analysis have become increasingly important in orthopedic research as they allow for more accurate and robust analysis of complex shape data such as articulated joints, bony defects and cartilage loss. These methods involve the use of non-linear transformations to describe shapes, rather than the traditional linear approaches, and have been shown to improve the precision and sensitivity of shape analysis in a variety of applications. In orthopedic research, non-linear methods have been used to study a range of topics, including the analysis of bone shape and structure in relation to osteoarthritis, the assessment of joint deformities and their impact on joint function, and the prediction of patient outcomes following surgical interventions. Overall, the use of non-linear methods in statistical shape analysis has the potential to advance our understanding of the relationship between shape and function in the
In the context of regenerative medicine for the treatment of musculoskeletal pathologies mesenchymal stromal cells (MSCs) have shown good results thanks to secretion of therapeutic factors, both free and conveyed within the extracellular vesicles (EV), which in their totality constitute the “secretome”. The portfolio and biological activity of these molecules can be modulated by both in vitro and in vivo conditions, thus making the analysis of these activities very complex. A deep knowledge of the targets regulated by the secretome has become a matter of fundamental importance and a homogeneous and complete molecular characterization is still lacking in the field of applications for the
The human
Calcium is an important element for a wide range of physiological functions including muscle contraction, neuronal activity, exocytosis, blood coagulation and cell communication. In the
Mesenchymal Stromal Cells (MSC) have been proposed as a potential therapy for a broad range of diseases including those affecting the
Our
The establishment of a proper
Digital image correlation (DIC) is rapidly increasing in popularity in biomechanical studies of the
Tendons are dense connective tissues and critical components of the
Entheses are the anchorage sites of tendons to bones in the
Osteoporosis is an international health and financial burden of ever increasing proportions. Current treatments limit the rate of bone resorption and reduce fracture risk, however they are often associated with significant and debilitating side effects. The most commonly used therapies also do not stimulate osteoblast activity. Much current research focus is aimed at the metabolic and epigenetic pathways involved in osteoporosis. MicroRNAs have been shown to play an important role in bone homeostasis and pathophysiological conditions of the
Osteoporosis is an international health and financial burden of ever increasing proportions. Current treatments limit the rate of bone resorption and reduce fracture risk, however they are often associated with significant and debilitating side effects. The most commonly used therapies also do not stimulate osteoblast activity . 1,2,3. Much current research focus is aimed at the metabolic and epigenetic pathways involved in osteoporosis. MicroRNAs have been shown to play an important role in bone homeostasis and pathophysiological conditions of the
Introduction. Tendons and ligaments (TLs) play key roles in the
Finite element models of the