Advertisement for orthosearch.org.uk
Results 1 - 20 of 1390
Results per page:
Bone & Joint Research
Vol. 1, Issue 11 | Pages 297 - 309
1 Nov 2012
McIlwraith CW Frisbie DD Kawcak CE

Osteoarthritis (OA) is an important cause of pain, disability and economic loss in humans, and is similarly important in the horse. Recent knowledge on post-traumatic OA has suggested opportunities for early intervention, but it is difficult to identify the appropriate time of these interventions. The horse provides two useful mechanisms to answer these questions: 1) extensive experience with clinical OA in horses; and 2) use of a consistently predictable model of OA that can help study early pathobiological events, define targets for therapeutic intervention and then test these putative therapies. This paper summarises the syndromes of clinical OA in horses including pathogenesis, diagnosis and treatment, and details controlled studies of various treatment options using an equine model of clinical OA


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_1 | Pages 16 - 16
2 Jan 2024
Lipreri M Pasquarelli A Scelfo D Baldini N Avnet S
Full Access

Osteoporosis is a progressive, chronic disease of bone metabolism, characterized by decreased bone mass and mineral density, predisposing individuals to an increased risk of fractures. The use of animal models, which is the gold standard for the screening of anti-osteoporosis drugs, raises numerous ethical concerns and is highly debated because the composition and structure of animal bones is very different from human bones. In addition, there is currently a poor translation of pre-clinical efficacy in animal models to human trials, meaning that there is a need for an alternative method of screening and evaluating new therapeutics for metabolic bone disorders, in vitro. The aim of this project is to develop a 3D Bone-On-A-Chip that summarizes the spatial orientation and mutual influences of the key cellular components of bone tissue, in a citrate and hydroxyapatite-enriched 3D matrix, acting as a 3D model of osteoporosis. To this purpose, a polydimethylsiloxane microfluidic device was developed by CAD modelling, stereolithography and replica molding. The device is composed by two layers: (i) a bottom layer for a 3D culture of osteocytes embedded in an osteomimetic collagen-enriched matrigel matrix with citrate-doped hydroxyapatite nanocrystals, and (ii) a upper layer for a 2D perfused co-culture of osteoblasts and osteoclasts seeded on a microporous PET membrane. Cell vitality was evaluated via live/dead assay. Bone deposition and bone resorption was analysed respectively with ALP, Alizarin RED and TRACP staining. Osteocytes dendrite expression was evaluated via immunofluorescence. Subsequently, the model was validated as drug screening platform inducing osteocytes apoptosis and administrating standard anti-osteoporotic drugs. This device has the potential to substitute or minimize animal models in pre-clinical studies of osteoporosis, contributing to pave the way for a more precise and punctual personalized treatment


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_18 | Pages 123 - 123
14 Nov 2024
D’Arrigo D Conte P Anzillotti G Giancamillo AD Girolamo LD Peretti G Crovace A Kon E
Full Access

Introduction. Degenerative meniscal tears are the most common meniscal lesions, representing huge clinical and socio-economic burdens. Their role in knee osteoarthritis (OA) onset and progression is well established and demonstrated by several retrospective studies. Effective preventive measures and non-surgical treatments for degenerative meniscal lesions are still lacking, also because of the lack of specific and accurate animal models in which test them. Thus, we aim to develop and validate an accurate animal model of meniscus degeneration. Method. Three different surgical techniques to induce medial meniscus degenerative changes in ovine model were performed and compared. A total of 32 sheep (stifle joints) were subjected to either one of the following surgical procedures: a) direct arthroscopic mechanical meniscal injury; b) peripheral devascularization and denervation of medial meniscus; c) full thickness medial femoral condyle cartilage lesion. In all the 3 groups, the contralateral joint served as a control. Result. From a visual examination of the knee joint emerged a clear difference between control and operated groups, in the menisci but also in the cartilage, indicating the onset of OA-related cartilage degeneration. The meniscal and cartilaginous lesions were characterized by different severity and location in the different groups. For instance, a direct meniscal injury caused cartilaginous lesions especially in the medial part of the condyles, and the other approaches presented specific signature. Evaluation of scoring scales (e.g. ICRS score) allowed the quantification of the damage and the identification of differences among the four groups. Conclusion. We were effectively able to develop and validate a sheep model of meniscal degeneration which led to the onset of OA. This innovative model will allow to test in a pre-clinical relevant setting innovative approaches to prevent meniscal-related OA. Funding. Project PNRR-MAD-2022-12375978 funded by Italian Ministry of Health


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_8 | Pages 109 - 109
11 Apr 2023
Amado I Hodgkinson T Mathavan N Murphy C Kennedy O
Full Access

Post-traumatic osteoarthritis (PTOA) is a subset of osteoarthritis, which occurs secondary to traumatic joint injury which is known to cause pathological changes to the osteochondral unit. Articular cartilage degradation is a primary hallmark of OA, and is normally associated with end-stage disease. However, subchondral bone marrow lesions are associated with joint injury, and may represent localized bone microdamage. Changes in the osteochondral unit have been traditionally studied using explant models, of which the femoral-head model is the most common. However, the bone damage caused during harvest can confound studies of microdamage. Thus, we used a novel patellar explant model to study osteochondral tissue dynamics and mechanistic changes in bone-cartilage crosstalk. Firstly, we characterized explants by comparing patella with femoral head models. Then, the patellar explants (n=269) were subjected to either mechanical or inflammatory stimulus. For mechanical stimulus 10% strain was applied at 0.5 and 1 Hz for 10 cycles. We also studied the responses of osteochondral tissues to 10ng/ml of TNF-α or IL-1β for 24hrs. In general the findings showed that patellar explant viability compared extremely well to the femoral head explant. Following IL-1β or TNF-α treatment, MMP13, significantly increased three days post exposure, furthermore we observed a decrease in sulfate glycoaminoglycan (sGAG) content. Bone morphometric analysis showed no significant changes. Contrastingly, mechanical stimulation resulted in a significant decrease sGAG particularly at 0.5Hz, where an increase in MMP13 release 24hrs post stimulation and an upregulation of bone and cartilage matrix degradation markers was observed. Furthermore, mechanical stimulus caused increases in TNF-α, MMP-8, VEGF expression. In summary, this study demonstrates that our novel patella explant model is an excellent system for studying bone-cartilage crosstalk, which responds well to both mechanical and inflammatory stimulus and is thus of great utility in the study of PTOA


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_18 | Pages 31 - 31
14 Nov 2024
Bal Z Takakura N
Full Access

Introduction. Femoral head osteonecrosis (FHO) is a condition in which the inadequate blood supply disrupts osteogenic-angiogenic coupling that results in diminishment of femoral perfusion and ends up with FHO. The insufficient knowledge on molecular background and progression pattern of FHO and the restrictions in obtaining human samples bring out the need for a small animal trauma model to research FHO aetiology. Hence, this study aims to develop a mouse trauma model to elucidate the molecular mechanisms behind FHO. Method. Left femoral head was dislocated from the hip joint, ligamentum teres was cut, and a slight circular incision was done around the femoral neck of 8-week-old male C57BL/6J mice to disrupt the blood supply to femoral head. Right hip joint was left unoperated as control. Animals (n=5 per time point) were sacrificed on 2-3-4-6-8-10-12 weeks, and ex-vivo µCT was taken to assess bone structural parameters. Haematoxylin/eosin (HE)- and immunohistochemical-staining (IHCS) for CD31 and EMCN were done to observe histology and marrow-specific H-type vascular structures, respectively. Result. μCT assessment showed trabecular bone loss and decreased BV/TV from 2 to 8 weeks in FHO side. HE staining displayed the increased number of empty lacunae was observed in FHO side as early as 24h after operation. By 4. th. week, IHCS results displayed the invasion of the epiphyseal plate by H-type blood vessels in FHO side, while the epiphyseal plate was observed intact in control side. Also, by 6. th. week the HE-staining showed the presence of bone marrow necrosis and bone fat accumulation in FHO side. Conclusion. Trabecular bone loss, increased number of empty lacunae, bone fat imbalance and bone marrow necrosis are reported as the signs of osteonecrosis. Thus, our results are coherent with the literature and indicated that we were able to effectively generate a trauma model for FHO in mice for the first time in literature


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_1 | Pages 79 - 79
2 Jan 2024
Rasouligandomani M Chemorion F Bisotti M Noailly J Ballester MG
Full Access

Adult Spine Deformity (ASD) is a degenerative condition of the adult spine leading to altered spine curvatures and mechanical balance. Computational approaches, like Finite Element (FE) Models have been proposed to explore the etiology or the treatment of ASD, through biomechanical simulations. However, while the personalization of the models is a cornerstone, personalized FE models are cumbersome to generate. To cover this need, we share a virtual cohort of 16807 thoracolumbar spine FE models with different spine morphologies, presented in an online user-interface platform (SpineView). To generate these models, EOS images are used, and 3D surface spine models are reconstructed. Then, a Statistical Shape Model (SSM), is built, to further adapt a FE structured mesh template for both the bone and the soft tissues of the spine, through mesh morphing. Eventually, the SSM deformation fields allow the personalization of the mean structured FE model, leading to generate FE meshes of thoracolumbar spines with different morphologies. Models can be selectively viewed and downloaded through SpineView, according to personalized user requests of specific morphologies characterized by the geometrical parameters: Pelvic Incidence; Pelvic Tilt; Sacral Slope; Lumbar Lordosis; Global Tilt; Cobb Angle; and GAP score. Data quality is assessed using visual aids, correlation analyses, heatmaps, network graphs, Anova and t-tests, and kernel density plots to compare spinopelvic parameter distributions and identify similarities and differences. Mesh quality and ranges of motion have been assessed to evaluate the quality of the FE models. This functional repository is unique to generate virtual patient cohorts in ASD. Acknowledgements: European Commission (MSCA-TN-ETN-2020-Disc4All-955735, ERC-2021-CoG-O-Health-101044828)


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_16 | Pages 15 - 15
17 Nov 2023
Mondal S Mangwani J Brockett C Gulati A Pegg E
Full Access

Abstract. Objectives. This abstract provides an update on the Open Ankle Models being developed at the University of Bath. The goal of this project is to create three fully open-source finite element (FE) ankle models, including bones, ligaments, and cartilages, appropriate musculoskeletal loading and boundary conditions, and heterogeneous material property distribution for a standardised representation of ankle biomechanics and pre-clinical ankle joint analysis. Methods. A computed tomography (CT) scan data (pixel size of 0.815 mm, and slice thickness of 1 mm) was used to develop the 3D geometry of the bones (tibia, talus, calcaneus, fibula, and navicular). Each bone was given the properties of a heterogeneous elastic material based on the CT greyscale. The density values for each bone element were calculated using a linear empirical relation, ρ= 0.0405 + (0.000918) HU and then power law equations were utilised to get the Young's Modulus value for each bone element [1]. At the bone junction, a thickness of cartilage ranging from 0.5–1 mm, and was modelled as a linear material (E=10 MPa, ν=0.4 [2]). All ligament insertions and positions were represented by four parallel spring elements, and the ligament stiffness and material attributes were applied in accordance with the published literature [2]. The ankle model was subjected to static loading (balance standing position). Four noded tetrahedral elements were used for the discretization of bones and cartilages. All degrees of freedom were restricted at the proximal ends of the tibia and fibula. The ground reaction forces were applied at the underneath of the calcaneus bone. The interaction between the cartilages and bones was modelled using an augmented contact algorithm with a sliding elastic contact between each cartilage. A tied elastic contact was used between the cartilages and the bone. FEbio 2.1.0 (University of Utah, USA) was used to construct the open-source ankle model. Results. When the double-legged stance phase loading condition was taken into consideration, stress at the antero-medial tibial wall (ranged from 1 to 7 MPa) was found to be similar to the prior work [2], indicating bulk of the load transfer was through this region. The maximum principal strain was predicted at the different regions on bones around the ankle joint. The proximal surface of the talus, and tibial distal surface were shown to have the highest maximum principal strains followed by antero-medial walls of the tibia bone, at the proximal location. Conclusions. The present open 3D FE model of the ankle will assist researchers in better understanding ankle biomechanics, precisely predicting load transfer, and examining the ankle to address unmet clinical needs for this joint. The results of the current investigation are realistic in terms of load transfer and stress-strain distribution across the ankle joint and well comparable to those reported in the literature [2]. However, sensitivity and ankle instability simulations will be performed in future work to investigate the model's reliability and robustness. Declaration of Interest. (b) declare that there is no conflict of interest that could be perceived as prejudicing the impartiality of the research reported:I declare that there is no conflict of interest that could be perceived as prejudicing the impartiality of the research project


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_1 | Pages 29 - 29
2 Jan 2024
Bojan A Procter P Karami P Pioletti D
Full Access

The fixation of articular fractures, with many small osteochondral fragments, is a challenging unmet need where a bone adhesive would be a useful adjunct to standard treatments. Whilst there are no such adhesives in current clinical use, preclinical animal models have demonstrated good healing of bone in unloaded models using an adhesive based on phosphoserine modified calcium phosphate cement (PM-CPC). An ex-vivo human bone core model has shown that this adhesive bonds freshly harvested human bone. To confirm this adhesive is capable of supporting loaded osteochondral fragments a porcine model has been developed initially ex-vivo on the path to an in-vivo study. In this model bone cores, harvested from the medial knee condyle, are glued in place with the adhesive. In-vivo adjacent pairs of bone cores would be replaced with adhesive and a control with conventional pin fixation respectively. As osteochondral bone fragments have both bone and cartilage components, this suggested a dual adhesive strategy in which components designed for each tissue type are used. This concept has been explored in an ex-vivo porcine pilot study presented herewith. At the subchondral bone level, the PM-CPC was used. At the cartilage level, a second adhesive, a methacrylated phosphoserine containing hyaluronic acid (MePHa) hydrogel designed specifically for soft tissues was applied. This is a challenging model as both adhesives have to be used simultaneously in a wet field. The pilot showed that once the subchondral component is glued in place, the PM-CPC adhesive intruding into the cartilage gap can be removed before applying the cartilage adhesive. This enabled the MePHa adhesive to be injected between the cut cartilage edges and subsequently light-cured. This two-stage gluing method is demanding and an in-vivo pilot is necessary to perfect and prove the operative technique. Acknowledgements: The human bone core project was partially financed by Innovation Fund of Västra Götaland Region, Sweden. The MePHa hydrogel work was supported by a Swiss National Fund grant # CR23I3_159301


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_7 | Pages 83 - 83
4 Apr 2023
Loukopoulou C Vorstius J Paxton J
Full Access

To ensure clinical relevance, the in vitro engineering of tissues for implantation requires artificial replacements to possess properties similar to native anatomy. Our overarching study is focussed on developing a bespoke bone-tendon in vitro model replicating the anatomy at the flexor digitorum profundus (FDP) tendon insertion site at the distal phalanx. Anatomical morphometric analysis has guided FDP tendon model design consisting of hard and soft tissue types. Here, we investigate potential materials for creation of the model's bone portion by comparison of two bone cements; brushite and genex (Biocomposites Ltd). 3D printed molds were prepared based on anatomical morphometric analysis of the FDP tendon insertion site and used to cast identical bone blocks from brushite and genex cements. Studies assessing the suitability of each cement type were conducted e.g. setting times, pH on submersion in culture medium and interaction with fibrin gels. Data was collected using qualitative imaging and qualitative measurements (N=3,n=6) for experimental conditions. Both brushite (BC) and genex (GC) cements could be cast into bespoke molds, producing individual blocks and were mixed/handled with appropriate setting times. On initial submersion in culture medium, BC caused a reduction in pH values (7.49 [control]) to 6.85) while GC remained stable (7.59). Reduction in pH value also affected fibrin gel interaction where gel was seen to be detaching/not forming around BC and medium discolouration was noted. This was not observed in GC. While GC outperformed BC in initial tests, repeated washing of BC led to pH stabilisation (7.5,3xwashes), consistent with their further use in this model. This study has compared BC and GC as materials for bone block production. Both materials show promise, and current work assessing material properties and cell proliferation are needed to inform our choice for use in our FDP-tendon-bone interface model. This research was supported by an ORUK Studentship award (ref:533). Genex was kindly provided by Biocomposites, Ltd


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_1 | Pages 114 - 114
2 Jan 2024
Maglio M Tschon M Sartori M Martini L Rocchi M Dallari D Giavaresi G Fini M
Full Access

The use of implant biomaterials for prosthetic reconstructive surgery and osteosynthesis is consolidated in the orthopaedic field, improving the quality of life of patients and allowing for healthy and better ageing. However, there is the lack of advanced innovative methods to investigate the potentialities of smart biomaterials, particularly for the study of local effects of implant and osteointegration. Despite the complex process of osseointegration is difficult to recreate in vitro, the growing challenges in developing alternative models require to set-up and validate new approaches. Aim of the present study is to evaluate an advanced in vitro tissue culture model of osteointegration of titanium implants in human trabecular bone. Cubic samples (1.5×1.5 cm) of trabecular bone were harvested as waste material from hip arthroplasty surgery (CE AVEC 829/2019/Sper/IOR); cylindrical defects (2 mm Ø, 6 mm length) were created, and tissue specimens assigned to the following groups: 1) empty defects- CTR-; 2) defects implanted with a cytotoxic copper pin (Merck cod. 326429)- CTR+; 3) defects implanted with standard titanium pins of 6 µm-rough (ZARE S.r.l) -Ti6. Tissue specimens were cultured in mini rotating bioreactors in standard conditions, weekly assessing viability. At the 8-week-timepoint, immunoenzymatic, microtomographic, histological and histomorphometric analyses were performed. The model was able to simulate the effects of implantation of the materials, showing a drop in viability in CTR+, differently from Ti6 which appears to have a trophic effect on the bone. MicroCT and histological analysis supported the results, with lower BV/TV and Tb.Th values observed in CTR- compared to CTR+ and Ti6 and signs of matrix and bone deposition at the implant site. The collected data suggest the reliability of the tested model which can recreate the osseointegration process in vitro and can therefore be used for preliminary evaluations to reduce and refine in vivo preclinical models. Acknowledgment: This work was supported by Emilia-Romagna Region for the project “Sviluppo di modelli biologici in vitro ed in silico per la valutazione e predizione dell'osteointegrazione di dispositivi medici da impianto nel tessuto osseo”


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_1 | Pages 122 - 122
2 Jan 2024
Tseranidou S Bermudez-Lekerika P Segarra-Queralt M Gantenbein B Maitre C Piñero J Noailly J
Full Access

Intervertebral disc (IVD) degeneration (IDD) involves imbalance between the anabolic and the catabolic processes that regulate the extracellular matrix of its tissues. These processes are complex, and improved integration of knowledge is needed. Accordingly, we present a nucleus pulposus cell (NPC) regulatory network model (RNM) that integrates critical biochemical interactions in IVD regulation and can replicate experimental results. The RNM was built from a curated corpus of 130 specialized journal articles. Proteins were represented as nodes that interact through activation and inhibition edges. Semi-quantitative steady states (SS) of node activations were calculated. Then, a full factorial sensitivity analysis (SA) identified which out of the RNM 15 cytokines, and 4 growth factors affected most the structural proteins and degrading enzymes. The RNM was further evaluated against metabolic events measured in non-healthy human NP explant cultures, after 2 days of 1ng/ml IL-1B catabolic induction. The RNM represented successfully an anabolic basal SS, as expected in normal IVD. IL-1B was able to increase catabolic markers and angiogenic factors and decrease matrix proteins. Such activity was confirmed by the explant culture measurements. The SA identified TGF-β and IL1RA as the two most powerful rescue mediators. Accordingly, TGFβ signaling-based IDD treatments have been proposed and IL-1RA gene therapy diminished the expression of proteases. It resulted challenging to simulate rescue strategies by IL-10, but interestingly, IL-1B could not induce IL-10 expression in the explant cultures. Our RNM was confronted to independent in vitro measurements and stands for a unique model, to integrate soluble protein signaling and explore IDD. Acknowledgements: European Commission (Disc4All-ITN-ETN-955735)


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_9 | Pages 45 - 45
17 Apr 2023
Cao M Zhu X Ong M Yung P Jiang Y
Full Access

To investigate temporal changes in synovial lymphatic system (SLS) drainage function after Anterior cruciate ligament (ACL) injury, a non-invasive ACL rupture model was used to induce the PTOA phenotype without altering the SLS structure. We have created a non-invasive ACL rupture model in the right knee (single overload impact) of 12- week-old C57bl/6 male mice to mimic the ACL rupture-induced PTOA development. 70 kDa-TxRedDextran were injected into the right knee of the mice at 0, 1, 2, and 4 wks post modeling (n=5/group), and the fluorescence signal distribution and intensity were measured by the IVIS system at 1 and 6 hrs post-injection. After 24 hrs, the drainage lymph nodes and whole knee joint were harvested and subjected to ex vivo IVIS imaging and immunofluorescence detection respectively. Manual ACL rupture was induced by 12N overloaded force and validated by a front drawer test. Intraarticular clearance of TxRed-Dextran detected by the IVIS was significantly reduced at 1, and 2 wks at a level of 43% and 55% respectively but was not significantly different from baseline levels at 4 wks (89%). TxRed-Dextran signal in draining lymph nodes was significantly reduced at 1 week at the level of but not for 2 and 4 wks compared to baseline levels (week 1–29%, week 2–50%, week 4–94%). TxRed-Dextran particle was significantly enriched in the synovium at 1, 2 wks but was not significantly different from baseline levels at 4 wks rupture-post ACL rupture (Particle numbers: Sham Ctrl-34 ±14, week 1, 113 ± 17; week 2, 89 ± 13; week 4, 46 ± 18; mean ± SD). We observed the drainage function of SLS significantly decreased at 1 and 2 wks after the ACL rupture, and was slowly restored at 4 wks post-injury in a non-invasive ACL rupture model. Early impairment of SLS drainage function may lead to accumulation of inflammatory factors and promote PTOA progression


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_8 | Pages 97 - 97
11 Apr 2023
Milakovic L Dandois F Fehervary H Scheys L
Full Access

This study aims to create a novel computational workflow for frontal plane laxity evaluation which combines a rigid body knee joint model with a non-linear implicit finite-element model wherein collateral ligaments are anisotropically modelled using subject-specific, experimentally calibrated Holzpfel-Gasser-Ogden (HGO) models. The framework was developed based on CT and MRI data of three cadaveric post-TKA knees. Bones were segmented from CT-scans and modelled as rigid bodies in a multibody dynamics simulation software (MSC Adams/view, MSC Software, USA). Medial collateral and lateral collateral ligaments were segmented based on MRI-scans and are modelled as finite elements using the HGO model in Abaqus (Simulia, USA). All specimens were submitted varus/valgus loading (0-10Nm) while being rigidly fixed on a testing bench to prevent knee flexion. In subsequent computer simulations of the experimental testing, rigid bodies kinematics and the associated soft-tissue force response were computed at each time step. Ligament properties were optimised using a gradient descent approach by minimising the error between the experimental and simulation-based kinematic response to the applied varus/valgus loads. For comparison, a second model was defined wherein collateral ligaments were modelled as nonlinear no-compression spring elements using the Blankevoort formulation. Models with subject-specific, experimentally calibrated HGO representations of the collateral ligaments demonstrated smaller root mean square errors in terms of kinematics (0.7900° +/− 0.4081°) than models integrating a Blankevoort representation (1.4704° +/− 0.8007°). A novel computational workflow integrating subject-specific, experimentally calibrated HGO predicted post-TKA frontal-plane knee joint laxity with clinically applicable accuracy. Generally, errors in terms of tibial rotation were higher and might be further reduced by increasing the interaction nodes between the rigid body model and the finite element software. Future work should investigate the accuracy of resulting models for simulating unseen activities of daily living


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_8 | Pages 89 - 89
11 Apr 2023
Dascombe L Le Maitre C Aberdein N
Full Access

This study aimed to characterise the microarchitecture of bone in different species of animal leading to the development of a physiologically relevant 3D printed cellular model of trabecular (Tb) and cortical bone (CB). Using high resolution micro-computed tomography (μ-CT) bone samples from multiple species were scanned and analysed before creating in silico models for 3D printing. Biologically relevant printing materials with physical characteristics similar to that of in vivo bone will be selected and tested for printability. Porcine and murine bone samples were scanned using μ-CT, with a resolution of 4.60 μM for murine and 11 μM for porcine and reconstructed to determine the architectural properties of both Tb and CB independently. A region of interest, 1 mm in height, will be used to generate an in-silico 3D model with dimensions (10 mm. 3. ) and suitable resolution before being translated into printable G code using CAD assisted software. A 1 mm section of each bone was analysed, to determine the differences in the microarchitecture with the intent of setting a benchmark for the developmental 3D in vitro model to be comparable against. In contrast, porcine caudal vertebrae (PCV) have an increased volume due to the size of the bone sample. Interestingly, BV/TR for Tb is similar between species in all samples except murine femur. Murine tibia and PCV have a similar Tb. number and thickness, however different SMI shape and separation. μ-CT scanning and analysis permits tessellation of the 3D output which will lead to the generation of an in silico printable model. Biomaterials are currently under optimisation to allow printability and shape integrity to reflect the morphological and physiological properties of bone


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_18 | Pages 101 - 101
14 Nov 2024
Oliveira SD Miklosic G Guicheux J Visage CL D'este M Helary C
Full Access

INTRODUCTION. Intervertebral disc (IVD) degeneration is not completely understood because of the lack of relevant models. In vivo models are inappropriate because animals are quadrupeds. IVD is composed of the Nucleus Pulposus (NP) and the Annulus Fibrosus (AF), an elastic tissue that surrounds NP. AF consists of concentric lamellae made of collagen I and glycosaminoglycans with fibroblast-like cells located between layers. In this study, we aimed to develop a novel 3D in vitro model of Annulus Fibrosus to study its degeneration. For this purpose, we reproduced the microenvironment of AF cells using 3D printing. METHOD. An ink consisting of dense collagen (30 mg.mL. -1. ) and tyramine-functionalized hyaluronic acid (THA) at 7.5 mg.mL. -1. was first designed by modulating pH and [NaCl] in order to inhibit the formation of polyionic complexes between collagen and THA. Then, composite inks were printed in different gelling baths to form collagen hydrogels. Last, THA photocrosslinking using eosin and green light was performed to strengthen hydrogels. Selected 3D printed constructs were then cellularized with fibroblasts. RESULTS. The physicochemical study revealed that collagen/THA solutions (4:1 ratio) used at pH 5 with 200 mM NaCl were homogenous. In addition, collagen fibrils were observed in these solutions. The dense composite collagen/THA inks printed in a 2X PBS bath rapidly gelled and the photo-crosslinking increased the mechanical properties by 2 to reach 25 kPa (Young's modulus). Then, 3D printing parameters were optimized (85 kPa, extrusion, 4.5 mm/s speed and 80% fill-in percentage) to generate flat and anisotropic lamellae observed by polarized light microscopy. For the in vitro study, several anisotropic layers were printed and fibroblasts seeded between them. Cells adhered to layers, spread, proliferate and aligned along the axis of printed layers. CONCLUSION. Taken together, these results show it is possible to reproduce in vitro the main AF's biochemical and physical properties


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_18 | Pages 97 - 97
14 Nov 2024
Ji E Leijsten L Bouma JW Rouchon A Maggio ND Banfi A Osch GV Farrell E lolli A
Full Access

Introduction. Endochondral ossification (EO) is the process of bone development via a cartilage template. It involves multiple stages, including chondrogenesis, mineralisation and angiogenesis. Importantly, how cartilage mineralisation affects angiogenesis during EO is not fully understood. Here we aimed to develop a new in vitro co-culture model to recapitulate and study the interaction between mineralised cartilage generated from human mesenchymal stromal cells (hMSCs) and microvascular networks. Method. Chondrogenic hMSC pellets were generated by culture with transforming growth factor (TGF)-β3. For mineralised pellets, β-glycerophosphate (BGP) was added from day 7 and TGF-β3 was withdrawn on day 14. Conditioned medium (CM) from the pellets was used to evaluate the effect on human umbilical vein endothelial cells (HUVECs) in migration, proliferation and tube formation assays. To perform direct co-cultures, pellets were embedded in fibrin hydrogels containing vessel-forming cells (HUVECs, adipose stromal cells) for 10 days with BGP to induce mineralisation. The pellets and hydrogels were characterised by immunohistochemistry and confocal imaging. Result. The CM from d14 chondrogenic or mineralised pellets significantly stimulated HUVEC migration and proliferation, as well as in vitro vascular network formation. When CM from pellets subjected to prolonged mineralisation (d28) was used, these effects were strongly reduced. When chondrogenic and mineralised pellets were directly co-cultured with vessel-forming cells in fibrin hydrogels, the cartilage matrix (collagen type II/X stainings) and the mineral deposition (von Kossa staining) were well preserved. Confocal imaging analyses demonstrated the formation of microvascular networks with well-formed lumina. Importantly, more microvascular structures were formed in the proximity of chondrogenic pellets than mineralized pellets. Conclusion. The angiogenic properties of tissue engineered cartilage are significantly reduced upon prolonged mineralisation. We developed a 3D co-culture model to study the role of angiogenesis in endochondral bone formation, which can have applications in disease modelling studies


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_8 | Pages 54 - 54
11 Apr 2023
Šećerović A Ristaniemi A Cui S Li Z Alini M Weder G Heub S Ledroit D Grad S
Full Access

A novel ex vivo intervertebral disc (IVD) organ model and corresponding sample holder were developed according to the requirements for six degrees of freedom loading and sterile culture in a new generation of multiaxial bioreactors. We tested if the model can be maintained in long-term IVD organ culture and validated the mechanical resistance of the IVD holder in compression, tension, torsion, and bending. An ex vivo bovine caudal IVD organ model was adapted by retaining 5-6 mm of vertebral bone to machine a central cross and a hole for nutrient access through the cartilaginous endplate. A counter cross was made on a customized, circular IVD holder. The new model was compared to a standard model with a minimum of bone for the cell viability and height changes after 3 weeks of cyclic compressive uniaxial loading (0.02-0.2 MPa, 0.2 Hz, 2h/ day; n= 3 for day 0, n= 2 for week 1, 2, and 3 endpoints). Mechanical tests were conducted on the assembly of IVD and holder enhanced with different combinations of side screws, top screws, and bone adhesive (n=3 for each test). The new model retained a high level of cell viability after three weeks of in vitro culture (outer annulus fibrosus 82%, inner annulus fibrosus 69%, nucleus pulposus 75%) and maintained the typical values of IVD height reduction after loading (≤ 10%). The holder-IVD interface reached the following highest average values in the tested configurations: 320.37 N in compression, 431.86 N in tension, 1.64 Nm in torsion, and 0.79 Nm in bending. The new IVD organ model can be maintained in long-term culture and when combined with the corresponding holder resists sufficient loads to study IVD degeneration and therapies in a new generation of multiaxial bioreactors


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_7 | Pages 126 - 126
4 Apr 2023
Koblenzer M Weiler M Pufe T Jahr H
Full Access

Many age-related diseases affect our skeletal system, but bone health-targeting drug development strategies still largely rely on 2D in vitro screenings. We aimed at developing a scaffold-free progenitor cell-based 3D biomineralization model for more physiological high-throughput screenings. MC3T3-E1 pre-osteoblast spheroids were cultured in V-shaped plates for 28 days in alpha-MEM (10% FCS, 1% L-Gln, 1X NEAA) with 1% pen/strep, changed every two days, and differentiation was induced by 10mM b-glycerophosphate and 50µg/ml ascorbic-acid. Osteogenic cell differentiation was assessed through profiling mRNA expression of selected osteogenic markers by efficiency corrected normalized 2^DDCq RT-qPCR. Biomineralization in spheroids was evaluated by histochemistry (Alizarin Red/von Kossa staining), Alkaline phosphatase (Alp) activity, Fourier transform infrared spectroscopy (FTIR) analyses, micro-CT analyses, and scanning electron microscopy on critical point-dried samples. GraphPad Prism 9 analyses comprised Shapiro-Wilk and Brown-Forsythe tests as well as 2-way ANOVA with Tukey post-hoc and non-parametric Kruskal-Wallis with Dunn post-hoc tests. During mineralization, as opposed to non-mineralizing conditions, characteristic mRNA expression profiles of selected early and late osteoblast differentiation markers (e.g., RunX, Alp, Col1a1, Bglap) were observed between day 0 and 28 of culture; Alp was strongly upregulated (p<0.001) from day 7 on, followed by its enzymatic activity (p<0.001). Bglap and Col1a1 expression peaked on (p<0.001) and from day 14 on (p<0.05), respectively. IHC revealed osteocalcin staining in the spheroid core regions at day 14, while type I collagen staining of the cores was most prominent from day 21 on. Alizarin Red and Von Kossa confirmed central and radially outwards expanding mineralization patterns between day 14 and day 28, which was accompanied by a steady increase in extracellular calcium deposition over time (p<0.001). Micro-CT analyses allowed quantitative appreciation of the overall increase in mineral density over time (day21, p<0.05; d28, p<0.001), while SEM-EDX and FTIR ultimately confirmed a bone-like hydroxyapatite mineral deposition in 3D. A novel and thoroughly characterized versatile bone-like 3D biomineralization in vitro model was established, which allows for studying effects of pharmacological interventions on bone mineralization ex vivo under physiomimetic conditions. Ongoing studies currently aim at elucidating in how far it specifically recapitulates intramembranous ossification


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_18 | Pages 94 - 94
14 Nov 2024
Koh J Mungalpara N Chang N Devi IMP Hutchinson M Amirouche F
Full Access

Introduction. Understanding knee joint biomechanics is crucial, but studying Anterior cruciate ligament (ACL) biomechanics in human adolescents is challenging due to limited availability cadaveric specimens. This study aims to validate the adolescent porcine stifle joint as a model for ACL studies by examining the ACL's behavior under axial and torsion loads and assessing its deformation rate, stiffness, and load-to-failure. Methods. Human knee load during high-intensity sports can reach 5-6 times body weight. Based on these benchmarks, the study applied a force equivalent to 5-times body weight of juvenile porcine samples (90 pounds), estimating a force of 520N. Experiments involved 30 fresh porcine stifle joints (Yorkshire breed, Avg 90 lbs, 2-4 months old) stored at -22°C, then thawed and prepared. Joints were divided into three groups: control (load-to-failure test), axially loaded, and 30-degree torsion loaded. Using a servo-hydraulic material testing machine, the tibia's longitudinal axis was aligned with the load sensor, and specimens underwent unidirectional tensile loading at 1 mm/sec until rupture. Data on load and displacement were captured at 100 Hz. Results. One-way ANOVA showed statistically significant differences in maximum failure force among loading conditions (p = 0.0039). Post hoc analysis indicated significant differences between the control and 500N (non-twisted) groups (p = 0.014) and between the control and 500N (twisted) groups (p = 0.003). However, no significant difference was found between 500N (non-twisted) and 500N (twisted) groups (p = 0.2645). Two samples broke from the distal femur growth plates, indicating potential growth plate vulnerability in adolescent porcines. Conclusions. The study validates the adolescent porcine stifle joint as a suitable model for ACL biomechanical research, demonstrating that torsional loads are as damaging to the ACL's integrity as equivalent axial loads. It also highlights the potential vulnerability of growth plates in younger populations, reflected in the porcine model


Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_14 | Pages 37 - 37
1 Dec 2022
Contartese D Salamanna F Borsari V Pagani S Sartori M Martini L Brodano GB Gasbarrini A Fini M
Full Access

Breast cancer is the most frequent malignancy in women with an estimation of 2.1 million new diagnoses in 2018. Even though primary tumours are usually efficiently removed by surgery, 20–40% of patients will develop metastases in distant organs. Bone is one of the most frequent site of metastases from advanced breast cancer, accounting from 55 to 58% of all metastases. Currently, none of the therapeutic strategies used to manage breast cancer bone metastasis are really curative. Tailoring a suitable model to study and evaluate the disease pathophysiology and novel advanced therapies is one of the major challenges that will predict more effectively and efficiently the clinical response. Preclinical traditional models have been largely used as they can provide standardization and simplicity, moreover, further advancements have been made with 3D cultures, by spheroids and artificial matrices, patient derived xenografts and microfluidics. Despite these models recapitulate numerous aspects of tumour complexity, they do not completely mimic the clinical native microenvironment. Thus, to fulfil this need, in our study we developed a new, advanced and alternative model of human breast cancer bone metastasis as potential biologic assay for cancer research. The study involved breast cancer bone metastasis samples obtained from three female patients undergoing wide spinal decompression and stabilization through a posterior approach. Samples were cultured in a TubeSpin Bioreactor on a rolling apparatus under hypoxic conditions at time 0 and for up to 40 days and evaluated for viability by the Alamar Blue test, gene expression profile, histology and immunohistochemistry. Results showed the maintenance and preservation, at time 0 and after 40 days of culture, of the tissue viability, biological activity, as well as molecular markers, i.e. several key genes involved in the complex interactions between the tumour cells and bone able to drive cancer progression, cancer aggressiveness and metastasis to bone. A good tis sue morphological and microarchitectural preservation with the presence of lacunar osteolysis, fragmented trabeculae locally surrounded by osteoclast cells and malignant cells and an intense infiltration by tumour cells in bone marrow compartment in all examined samples. Histomorphometrical data on the levels of bone resorption and bone apposition parameters remained constant between T0 and T40 for all analysed patients. Additionally, immunohistochemistry showed homogeneous expression and location of CDH1, CDH2, KRT8, KRT18, Ki67, CASP3, ESR1, CD8 and CD68 between T0 and T40, thus further confirming the invasive behaviour of breast cancer cells and indicating the maintaining of the metastatic microenvironment. The novel tissue culture, set-up in this study, has significant advantages in comparison to the pre-existent 3D models: the tumour environment is the same of the clinical scenario, including all cell types as well as the native extracellular matrix; it can be quickly set-up employing only small samples of breast cancer bone metastasis tissue in a simple, ethically correct and cost-effective manner; it bypasses and/or decreases the necessity to use more complex preclinical model, thus reducing the ethical burden following the guiding principles aimed at replacing/reducing/refining (3R) animal use and their suffering for scientific purposes; it can allow the study of the interactions within the breast cancer bone metastasis tissue over a relatively long period of up to 40 days, preserving the tumour morphology and architecture and allowing also the evaluation of different biological factors, parameters and activities. Therefore, the study provides for the first time the feasibility and rationale for the use of a human-derived advanced alternative model for cancer research and testing of drugs and innovative strategies, taking into account patient individual characteristics and specific tumour subtypes so predicting patient specific responses