Advertisement for orthosearch.org.uk
Orthopaedic Proceedings Logo

Receive monthly Table of Contents alerts from Orthopaedic Proceedings

Comprehensive article alerts can be set up and managed through your account settings

View my account settings

Visit Orthopaedic Proceedings at:

Loading...

Loading...

Full Access

Research

COMPARISON OF BONE ANCHOR MATERIALS IN AN ANATOMICALLY RELEVANT IN VITRO MODEL OF THE BONE-TENDON INTERFACE

The International Combined Orthopaedic Research Societies (ICORS), World Congress of Orthopaedic Research, Edinburgh, Scotland, 7–9 September 2022. Part 1 of 3.



Abstract

To ensure clinical relevance, the in vitro engineering of tissues for implantation requires artificial replacements to possess properties similar to native anatomy. Our overarching study is focussed on developing a bespoke bone-tendon in vitro model replicating the anatomy at the flexor digitorum profundus (FDP) tendon insertion site at the distal phalanx. Anatomical morphometric analysis has guided FDP tendon model design consisting of hard and soft tissue types. Here, we investigate potential materials for creation of the model's bone portion by comparison of two bone cements; brushite and genex (Biocomposites Ltd).

3D printed molds were prepared based on anatomical morphometric analysis of the FDP tendon insertion site and used to cast identical bone blocks from brushite and genex cements. Studies assessing the suitability of each cement type were conducted e.g. setting times, pH on submersion in culture medium and interaction with fibrin gels. Data was collected using qualitative imaging and qualitative measurements (N=3,n=6) for experimental conditions.

Both brushite (BC) and genex (GC) cements could be cast into bespoke molds, producing individual blocks and were mixed/handled with appropriate setting times. On initial submersion in culture medium, BC caused a reduction in pH values (7.49 [control]) to 6.85) while GC remained stable (7.59). Reduction in pH value also affected fibrin gel interaction where gel was seen to be detaching/not forming around BC and medium discolouration was noted. This was not observed in GC. While GC outperformed BC in initial tests, repeated washing of BC led to pH stabilisation (7.5,3xwashes), consistent with their further use in this model.

This study has compared BC and GC as materials for bone block production. Both materials show promise, and current work assessing material properties and cell proliferation are needed to inform our choice for use in our FDP-tendon-bone interface model.

This research was supported by an ORUK Studentship award (ref:533). Genex was kindly provided by Biocomposites, Ltd.


Email: