header advert
Results 1 - 10 of 10
Results per page:
Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_4 | Pages 5 - 5
1 Mar 2021
Kumar G Debuka E
Full Access

Increasing incidence of osteoporosis, obesity and an aging population have led to an increase in low energy hip fractures in the elderly. Perceived lower blood loss and lower surgical time, media coverage of minimal invasive surgery and patient expectations unsurprisingly have led to a trend towards intramedullary devices for fixation of extracapsular hip fractures. This is contrary to the Cochrane review of random controlled trials of intramedullary vs extramedullary implants which continues recommends the use of a sliding hip screw (SHS) over other devices. Furthermore, despite published literature of minimally invasive surgery (MIS) of SHS citing benefits such as reduced soft tissue trauma, smaller scar, faster recovery, reduced blood loss, reduced analgesia needs; the uptake of these approaches has been poor. We describe a novel technique one which remains minimally invasive, that not only has a simple learning curve but easily reproducible results. All patients who underwent MIS SHS fixation of extracapsular fractures were included in this study. Technique is shown in Figure 1. We collated data on all intertrochanteric hip fractures that were treated by a single surgeon series during period Jan 2014 to July 2015. Data was collected from electronic patient records and radiographs from Picture Archiving and Communication System (PACS). Surgical time, fluoroscopy time, blood loss, surgical incision length, post-operative transfusion, Tip Apex Distance (TAD) were analyzed. There were 10 patients in this study. All fractures were Orthopaedic Trauma Association (OTA) type A1 or A2. Median surgical time was 36 minutes (25–54). Mean fluoroscopy time was similar to standard incision sliding hip screw fixation. Blood loss estimation with MIS SHS can be undertaken safely and expeditiously for extracapsular hip fractures.


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_2 | Pages 14 - 14
1 Jan 2019
Warren JP Coe R Sikora S Miles DE Beales P Wilcox RK
Full Access

The purpose of this study was to develop a novel, minimally invasive therapy for nucleus pulposus augmentation without the need for major surgical incision.

Two optimum patented self-assembling peptides based on natural amino acids were mixed with glycosaminoglycans (GAGs) to form reversible, tunable hydrogels that mimic the vital biological osmotic pumping action and aid in swelling pressure of the intervertebral disc (IVD). Separate peptide and GAG solutions can be switched from fluid to gel upon mixing inside the body. The gels were analysed using a series of complementary techniques (FTIR, TEM & rheometry) to determine their cross-length scale structure and properties. Approaches to developing a clinical product were then developed including the incorporation of a fluorescent probe and a CT contrast agents to aid visualization of the gels, and a semi-automatic syringe driver rig, incorporating a pressure sensor, for the delivery of the solutions into the intervertebral discs. The efficacy of the procedure in restoring disc height and biomechanics was examined using chemically degenerated bovine caudal samples.

It was found the presence of the GAGs stabilized the peptides forming stiffer gels, even upon injection through a long (∼10cm) small gauge needle. The injected gels were easily visualized post injection by microCT and by eye during dissection under visible and UV light. It was also noted that following injection, the disc height of the degenerated samples was restored to a similar level of that observed for native discs.

A hydrogel has been developed that is injected through a narrow bore needle using a semi-automatic delivery rig and forms a self-assembled gel in situ which has shown to restore the disc height. Further tests are now underway to examine their biomechanical performance across more physiological time periods.


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_VIII | Pages 34 - 34
1 Mar 2012
Hasegawa M Kawamura G Wakabayashi H Sudo A Uchida A
Full Access

Introduction

Standard surgical exposure reduces blood flow to the patella during total knee arthroplasty (TKA). Reduction of patellar blood flow has resulted in patellofemoral complications including osteonecrosis and patellar fracture, necessitating revision surgery. Eversion of the patella is typically used to gain access to the knee joint in most TKA surgical approaches. More recently, the development of minimally invasive surgery (MIS) techniques has avoided patellar eversion by subluxing the patella. The present study is the first to measure patellar blood flow during MIS TKA with the knee in both extension and 90 degrees of flexion followed by lateral retraction and then eversion of the patella.

Methods

Patellar blood flow was measured using laser Doppler flowmetry in 40 patients during MIS TKA. Patients included 32 women and 8 men who had a mean age of 73 years (range, 52 to 88 years) and a mean weight of 59 kg (39 to 85 kg). The pre-operative diagnoses were osteoarthritis in 36 patients and rheumatoid arthritis in four patients. All patients underwent MIS TKA using the mini-midvastus approach. After initial blood flow was assessed with the leg in full extension, further measurements were performed after lateral retraction and after eversion of the patella. Then, blood flow was assessed with the knee in 90 degrees of flexion followed by lateral retraction and then eversion of the patella.


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_2 | Pages 25 - 25
1 Jan 2017
Shih K Lin C Lu H Lin C Lu T
Full Access

Total knee replacements (TKR) have been the main choice of treatment for alleviating pain and restoring physical function in advanced degenerative osteoarthritis of the knee. Recently, there has been a rising interest in minimally invasive surgery TKR (MIS-TKR). However, accurate restoration of the knee axis presents a great challenge. Patient-specific-instrumented TKR (PSI-TKR) was thus developed to address the issue. However, the efficacy of this new approach has yet to be determined. The purpose of the current study was thus to measure and compare the 3D kinematics of the MIS-TKR and PSI-TKR in vivo during sit-to-stand using a 3D fluoroscopy technology.

Five patients each with MIS-TKR and PSI-TKR participated in the current study with informed written consent. Each subject performed quiet standing to define their own neutral positions and then sit-to-stand while under the surveillance of a bi-planar fluoroscopy system (ALLURA XPER FD, Philips). For the determination of the 3D TKR kinematics, the computer-aided design (CAD) model of the TKR for each subject was obtained from the manufacturer including femoral and tibial components and the plastic insert. At each image frame, the CAD model was registered to the fluoroscopy image via a validated 2D-to-3D registration method. The CAD model of each prosthesis component was embedded with a coordinate system with the origin at the mid-point of the femoral epicondyles, the z-axis directed to the right, the y-axis directed superiorly, and the x-axis directed anteriorly. From the accurately registered poses of the femoral and tibial components, the angles of the TKR were obtained following a z-x-y cardanic rotation sequence, corresponding to flexion/extension, adduction/abduction and internal/external rotation.

During sit-to-stand the patterns and magnitudes of the translations were similar between the MIS-TKR and PSI-TKR groups, with posterior translations ranging from 10–20 mm and proximal translations from 29–31mm. Differences in mediolateral translations existed between the groups but the magnitudes were too small to be clinically significant. For angular kinematics, both groups showed close-to-zero abduction/adduction, but the PSI-TKR group rotated externally from an internally rotated position (10° of internal rotation) to the neutral position, while the MIS-TKR group maintained at an externally rotated position of less than 5° during the movement.

During sit-to-stand both groups showed similar patterns and magnitudes in the translations but significant differences in the angular kinematics existed between the groups. While the MIS-TKR group maintained at an externally rotated position during the movement, the PSI-TKR group showed external rotations during knee extension, a pattern similar to the screw home mechanism in a normal knee, which may be related to more accurate restoration of the knee axis in the PSI-TKR group. A close-to-normal angular motion may be beneficial for maintaining a normal articular contact pattern, which is helpful for the endurance of the TKR. The current study was the first attempt to quantify the kinematic differences between PSI and non-PSI MIS. Further studies to include more subjects will be needed to confirm the current findings. More detailed analysis of the contact patterns is also needed.


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXXVI | Pages 68 - 68
1 Aug 2012
Tu Y Xue H Liu X Cai M Xia Z Murray D
Full Access

Great interest in unicompartmental knee arthroplasty (UKA) for medial osteoarthritis has rapidly increased following the introduction of minimally invasive UKA (MI-UKA). This approach preserves the normal anatomy of knee, causes less damage to extensor mechanism and results in a more rapid post-operative recovery. However, experience with this approach is limited in China. The aim of this report was to determine the short-term clinical and radiographic outcomes of MI-UKA in the Chinese, and to identify any features that are unique to this population. Fifty two knees, in forty-eight patients, with medial compartmental osteoarthritis treated by MI-UKA via C-arm intensifier guide (CAIG) from May 2005 to January 2009 were reviewed. Pain and range of motion (ROM) was assessed using the HSS scoring system before and after surgery. Pre- and postoperative alignment of the lower limbs was measured and compared. The mean follow up time was 24 months (12-42 months). In all cases the pain over medial compartment of the knees was relieved or subsided. The post-operative ROM was 0-136 degree (mean 122degree), and the mean alignment was 2degree varus (0- 7degree varus). The HSS score increased from 72(61-82) to 92(72-95). 93% of the postoperative scores were good or excellent. Interestingly, the distribution of femoral component sizes of these patients was XS 2%, Small 83%, Medium 15%, Large 0%, XL 0%; whereas tibial component size was AA 27%, A 55%, B 15%, C 3%, D 0%, E 0%, and F 0%. The optimal fitted match between tibial and femoral size was: tibia AA and A with XS and small femur, tibia B and C with medium femur. The estimated match was: tibia D and E with large femur, tibia F with XL femur. In contrast to the Oxford report, the sizes of these components are smaller and not in correlation with the height, weight and BMI of the patients. We conclude that MI-UKA is an effective method for treating medial compartmental osteoarthritis of the knee in the Chinese population. CAIG is a feasibly intraoperative measure to predict femoral component sizes. However, component sizes and combinations are different from the Oxford guideline.


Though there are many techniques utilised in the correction of hallux valgus (HV), no single approach has been reported to be ideal for all patients to date. A great deal of controversy remains concerning the type of osteotomy, method of fixation, and inclusion of soft tissue procedures. Herein, we compared the outcomes of two different operative techniques, the minimally-invasive modified percutaneous technique and the distal chevron osteotomy, used to treat mild to moderate hallux valgus. This study was conducted in line with the CONSORT 2010 guidelines. 41 patients (58 feet) with mild to moderate hallux valgus were randomly assigned by computer to two different groups. The first group containing 24 patients (33 feet) was treated by the modified percutaneous technique, whereas the second group included 17 patients (25 feet) treated by distal chevron osteotomy. In the modified percutaneous group, after a mean follow up of 43 months, the mean correction of hallux valgus angle (HVA) was 26.69° (P=0.00001), the mean correction of intermetatarsal angle (IMA) was 9.45° (P=0.00001), and the mean improvement of AOFAS score was 47.94 points (P=0.00001). In the chevron osteotomy group, after a mean follow up of 44 months, the mean correction of hallux valgus angle was 26.72° (P=0.00001), the mean correction of intermetatarsal angle was 9° (P=0.00001), and the mean improvement of AOFAS score was 44.76 points (P=0.00001). In our study, the modified percutaneous technique proved to be equally effective as the distal chevron osteotomy, but with fewer complications and a higher rate of patient satisfaction.


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_11 | Pages 312 - 312
1 Jul 2014
Malhotra R Kumar N Wu P Zaw A Liu G Thambiah J Wong H
Full Access

Summary

Metastatic spinal disease is a common entity of much debate in terms of ideal surgical treatment. The introduction of MIS can be a game-changer in the treatment of MSD due to less peri-operative morbidity and allowing earlier radiotherapy and/or chemotherapy.

Introduction

Less invasive techniques have always been welcome for management of patients with ‘Metastatic Spinal Disorders’. This is because these patients can be poor candidates for extensive / major invasive surgery even though radiologically, there may be an indication for one. The aim of the treatment with Minimal Invasive Fixation (MIS) systems is mainly for ‘pain relief’ than to radically decrease tumour burden or to achieve near total spinal cord decompression, which could be major presentations in these patients. These procedures address the ‘spinal instability’ very well and they can address pain associated with compression fractures resulting from metastatic disease from a solid organ as well as multiple myeloma with minimal complications. These procedures can be combined with radiology and chemotherapy without much concern for wound problems in the way of infection or dehiscence. They also have a great advantage of timing of adjunct therapy closer to the index procedure. The disadvantage, however, are they do not allow thorough decompression of the spinal cord. There could also be problem in addressing patients who have severe vertebral height loss or loss of integrity of the anterior column where anterior column reconstruction may be required. There is a risk of inadequate fixation or implant loosening or failure. We aim to examine the results of MIS surgery in our department and support the rationale for its use.


Introduction

The purpose of this study was to evaluate the functional and radiographical results in patients who underwent a modified minimally invasive two-incision total hip arthroplasty using large-diameter ceramic-on-ceramic articulations for osteonecrosis of the femoral head.

Methods

One hundred and one patients (135 hips) who underwent unilateral minimally invasive two-incision total hip arthroplasties using large diameter ceramic-on-ceramic bearings for osteonecrosis of the femoral head with a minimum 12-months follow-up were included in this study. There were 22 women and 79 men who had a mean age of 46 years (range, 22 to 82 years). The mean follow-up was 25 months (range, 12 to 36 months). All surgeries were done by a single hip surgeon. The authors modified the original minimally invasive two-incision total hip arthroplasty technique and used large-diameter (32mm, 36mm) ceramic-on-ceramic articulations. In the lateral position, an anterolateral approach between the gluteus medius and tensor fascia lata muscles and a posterior approach between the piriformis and gluteus medius muscles was used. Functional results were measured by Harris hip (HHS) and WOMAC scores. Radiographic evaluation was assessed for positioning of the components and complications were assessed.


Introduction

The purpose of this study was to evaluate the functional and radiographical results in patients who underwent a modified minimally invasive two-incision total hip arthroplasty using large-diameter metal-on-metal articulations for osteonecrosis of the femoral head.

Methods

From December 2007 to July 2008, 45 hips (33 patients) underwent total hip arthroplasty for the treatment of osteonecrosis of the femoral head. There was 1 woman (2 hips) and 32 men (43 hips) who had a mean age of 39 years (range, 22 to 64 years). The minimum follow-up was 12 months (range, 12 to 19 months). The authors modified the original minimally invasive two-incision total hip arthroplasty technique and used large-diameter metal-on-metal articulations. In the lateral position, an anterolateral approach was used between the gluteus medius and tensor fascia lata muscles and for the posterior approach the muscle plane was between the piriformis and gluteus medius muscles. The acetabular components, Durom¯ (Zimmer) in 20 hips and Magnum¯ (Biomet) was used in 25 hips. M/L taper¯ (Zimmer) femoral stems were used in all cases. The size of the femoral heads were 38 mm (1 hip), 40 mm (3 hips), 42 mm (13 hips), 44 mm (18 hips), 46 mm (5 hips), 48 mm (4 hips) and 50 mm (1 hip). Postures such as excessive flexion or adduction which cause dislocation were not restricted, post-operatively. Functional results were measured by Harris hip scores (HHS), WOMAC scores, and range of motion. Radiographic evaluation was assessed for positions of components and post-operative complications were noted.


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXXVI | Pages 76 - 76
1 Aug 2012
Tu Y Xue H Liu X Cai M Xia Z
Full Access

Intramedullary (IM) femoral alignment guide for unicondylar knee arthroplasty (UKA) is a classic and generally accepted technique to treat unicompartmental knee osteoarthritis. However, IM system has a risk of excessive blood loss, fat embolism and activation of coagulation.Moreover, the implant placement and limb alignment may be less accurate in IM for UKA than total knee arthroplasty. So we try to use extramedullary (EM) femoral alignment for UKA to avoid above disadvantages. To our knowledge, few current studies have been reported by now. We reported a series of cases treated through a newly developed EM technique and evaluated the accuracy of femoral component alignment and preliminary clinical results. Between January 2009 and January 2010, 11 consecutive patients(15 knees)consisting of 8 males and 3 females were enrolled. There were 7 cases in unilateral knee and 4 cases in bilateral knees. The mean age was 65.2 years (range 60∼72 years). Incision, surgical time, blood loss and complications were measured. The pre- and post operative function of the knees were evaluated by HSS score system. The pre- and postoperative femoral component alignment was measured and compared. All cases were followed up for average 15 months (10-22 months). The mean length of incision was 7.2cm (range 6 to 8cm), the mean surgical time was 115.0min(range 90 to 125min),the mean blood loss was 50.8ml (range 50 to 80ml). The mean preoperative HSS score increased from 75 (range 63 to 83) to 95 (range 88 to 97) postoperatively (p<0.05). All femoral components were within the recommended range for varus/valgus (±10 degree) and lexion/extension (±5 degree) angle. None had complications associated with reamed canal injury. By using our EM technique, we could achieve an accurate femoral component alignment and satisfactory clinical effect. However, strict comparison between EM and cconventional IM technique and large amount of cases are essential. Further mid- and long-term studies are required.