Advertisement for orthosearch.org.uk
Results 1 - 11 of 11
Results per page:
Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_9 | Pages 70 - 70
17 Apr 2023
Flood M Gette P Cabri J Grimm B
Full Access

For clinical movement analysis, optical marker-based motion capture is the gold standard. With the advancement of AI-driven computer vision, markerless motion capture (MMC) has emerged. Validity against the marker-based standard has only been examined for lightly-dressed subjects as required for marker placement. This pilot study investigates how different clothing affects the measurement of typical gait metrics. Gait tests at self-selected speed (4 km/h) were performed on a treadmill (Motek Grail), captured by 9 cameras (Qualisys Miqus, 720p, f=100Hz) and analyzed by a leading MMC application (Theia, Canada). A healthy subject (female, h=164cm, m=54kg) donned clothes between trials starting from lightly dressed (LD: bicycle tight, short-sleeved shirt), adding a short skirt (SS: hip occlusion) or a midi-skirt (MS: partial knee occlusion) or street wear (SW: jeans covering ankle, long-sleeved blouse), the lattern combined with a short jacket (SWJ) or a long coat (SWC). Gait parameters (mean±SD, t=10s) calculated (left leg, mid-stance) were ankle pronation (AP-M), knee flexion (KF-M), pelvic obliquity (PO-M) and trunk lateral lean (TL-M) representing clinically common metrics, different joints and anatomic planes. Four repetitions of the base style (LD) were compared to states of increased garment coverage using the t-test (Bonferroni correction). For most gait metrics, differences between the light dress (LD) and various clothing styles were absent (p>0.0175), small (< 2SD) or below the minimal clinically important differences (MCID). For instance, KF-M was for LD=10.5°±1.7 versus MD=12.0°±0.5 (p=0.07) despite partial knee cover. AP-M measured for LD=5.2°±0.6 versus SW=4.1°±0.7 (p<0.01) despite ankle cover-up. The difference for KF-M between LD=10.5°±1.7 versus SWL=6.0°±0.9, SW and SWJ (7.6°±1.5, p<0.01) indicates more intra-subject gait variability than clothing effect. This study suggests that typical clothings styles only have a small clinically possibly negligible effect on common gait parameters measured with MMC. Thus, patients may not need to change clothes or be instructed to wear specific garments. In addition to avoiding marker placement, this further increases speed, ease and economy of clinical gait analysis with MMC facilitating high volume or routine application


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_8 | Pages 96 - 96
1 Apr 2017
Sayers A Wylde V Lenguerrand E Gooberman-Hill R Dawson J Beard D Price A Blom A
Full Access

Background. This article reviews four commonly used approaches to assess patient responsiveness to a treatment or therapy [Return To Normal (RTN), Minimal Important Difference (MID), Minimal Clinically Important Difference (MCID), OMERACT-OARSI (OO)], and demonstrates how each of the methods can be formulated in a multi-level modelling (MLM) framework. Methods. Data from the Arthroplasty Pain Experience (APEX) cohort study was used. Patients undergoing total hip and knee replacement completed the Intermittent and Constant Osteoarthritis Pain (ICOAP) questionnaire prior to surgery and then at 3, 6 and 12 months after surgery. We compare baseline scores, change scores, and proportion of individuals defined as “responders” using traditional and multi-level model (MLM) approaches to patient responsiveness. Results. Using existing approaches, baseline and change scores are underestimated, and the variance of baseline and change scores overestimated in comparison to MLM approaches. MLM increases the proportion of individuals defined as responding in RTN, MID, and OO criteria compared to existing approaches. Using MLM with the MCID criteria reduces the number of individuals identified as responders. Conclusion. MLM improves the estimation of the standard deviation of baseline and change scores by explicitly incorporating measurement error into the model, and avoiding regression to the mean when making individual predictions. Using refined definitions of responsiveness may lead to a reduction in misclassification when attempting to predict who does and does not respond to an intervention, and clarifies the similarities between existing methods. Approvals. The APEX trials were registered as an International Standardised Randomised Controlled Trial (96095682), approved by Southampton and South West Hampshire Research Ethics Committee (09/H0504/94) and all participants provided informed written consent


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_13 | Pages 105 - 105
1 Nov 2021
Al-Rub ZA Tyas B Singisetti K
Full Access

Introduction and Objective. Evidence in literature is contradicting regarding outcomes of total knee arthroplasty (TKA) in post-traumatic osteoarthritis (PTOA) and whether they are inferior to TKA in primary osteoarthritis (OA). The aim of this review was to find out if any difference exists in the results of TKA between the two indications. Materials and Methods. The electronic databases MEDLINE, EMBASE, The Cochrane Collaboration, and PubMed were searched and screened in duplicate for relevant studies. The selected studies were further subjected to quality assessment using the modified Coleman method. The primary outcome measure was patient reported outcome, and secondary outcome measures were infection, revision, stiffness, and patella tendon rupture. Results. A total of 18 studies involved 1129 patients with a mean age of 60.6 years (range 45.7–69) and follow up of 6.3 years. The time interval from index injury to TKA was 9.1 years. Knee Society Score (KSS) in PTOA reported in 12/18 studies showed functional improvement from 42.5 to 70 post-TKA exceeding minimally clinically important difference. In TKA for primary OA vs PTOA, deep peri-prosthetic joint infection (PJI) was reported in 1.9% vs 5.4% of patients, whilst revision of prosthesis at an average of 6 years post-operatively was performed in 2.6 vs 9.7% of patients. Conclusions. TKA is a successful treatment option for PTOA. However, the risk of significant complications like PJI and implant failure requiring revision is higher than primary OA cases. Patients should be counselled about those risks. Further well-designed comparative cohort-matched studies are needed to compare outcomes between the two populations


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_13 | Pages 148 - 148
1 Nov 2021
Maheu E Soriot-Thomas S Noël E Ganry H Lespesailles E Cortet B
Full Access

Introduction and Objective. Knee osteoarthritis (KOA) is a frequent disease for which therapeutic possibilities are limited. In current recommendations, the first-line analgesic is acetaminophen. However, low efficacy of acetaminophen, frequently leads to the use of weak opioids (WO) despite their poor tolerance, especially in elderly patients. The primary objective was to compare the analgesic efficacy and safety of a new wearable transcutaneous electrical nerve stimulation (W-TENS) to weak opioids (WO) in the treatment of moderate to severe, nociceptive, chronic pain in knee osteoarthritis patients. Materials and Methods. ArthroTENS study is a phase 3, non-inferiority, multicentric, prospective, randomized, single-blinded for primary efficacy outcome, controlled, in 2-parallel groups, clinical study comparing W-TENS versus WO over a 3-month controlled period with an additional, optional, non-controlled, 3-month follow-up for patients in W-TENS group. The co-primary outcome was KOA pain intensity (PI) at month 3 and the number of adverse events (AEs) over 3 months. Results. The non-inferiority of W-TENS was demonstrated in both the PP and ITT populations. At M3, PI in PP population was 3.87 (2.12) compared to 4.66 (2.37) (delta: −0.79 (0.44); 95% CI (−1.65; 0.08)) in W-TENS and WO groups, respectively. Since the absolute value of the 95% CI of the between-treatments mean PI difference [−1.71, – 0.12] was above 0 in ITT set, the planned superiority analysis was performed, demonstrating that W-TENS was significantly superior to WO at M3 (P=0.0124). At M1 and M3, the W-TENS group reached the absolute minimal clinically important difference (MCID) for an analgesic (1.8 (2.1) and 2.1 (2.3), respectively), corresponding to a 20 mm reduction in PI (interquartile range: 15–30) on a 0–100 mm visual analogic scale – i.e. 2 points on a numerical rating scale – which equates to “much better”. Conversely, in the WO group, a 0.5 (1.8) and a 1.1 (2.1) reduction in PI were observed at M1 and M3, respectively, while a 1-point reduction in PI is required to be considered as a “slightly better” improvement. In WO group, AEs were the common systemic AEs reported with WO (nausea, constipation, drowsiness, dizziness, pruritus, vomiting, dry mouth). AEs in W-TENS group were local, such as local cutaneous reaction (erythema). Thirty-nine (70.9%) patients wished to extend W-TENS treatment for 3 additional months. Only one patient discontinued this additional period and results were maintained at M6. Conclusions. W-TENS was more effective and better tolerated than WO in the treatment of nociceptive KOA chronic pain and could represent an interesting non-pharmacological alternative to WO


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_16 | Pages 131 - 131
1 Nov 2018
Giesinger JM
Full Access

Patient-reported outcomes (PROs) are widely used in the orthopaedic field to assess the impact of conservative and surgical interventions from a patient's perspective. Available instruments cover a range of outcome parameters, such as pain, function, stiffness, quality of life or joint awareness. Choice of instrument for a specific study for clinical practice should include the appraisal of the psychometric characteristics of the measure. The presentation will focus on the assessment of the psychometric characteristics of PRO instruments and provide criteria for evaluating those. The concepts of objectivity, reliability and validity will be explained in the context of PRO instrument and the interpretation of score points derived from PRO instruments will be discussed detailing concepts such as minimal important change/difference, norm data, and thresholds based on external criteria. Finally, international guidelines that define standards for the various procedures on development, validation and translation of PRO instruments will be summarised


Bone & Joint 360
Vol. 12, Issue 6 | Pages 49 - 51
1 Dec 2023
Burden EG Whitehouse MR Evans JT


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_4 | Pages 15 - 15
1 Jan 2013
Patel M Newey M Sell P
Full Access

Background. The majority of studies assessing minimal clinical important difference in outcome do so for management of chronic low back pain. Those that identify MCID following spinal surgical intervention fail to differentiate between the different pathologies and treatments or use variable methods and anchors in the calculation. Aim. To identify the MCID in scores across the most common spinal surgical procedures using standardised methods of calculation. Method. Prospective longitudinal study following elective lumbar spinal surgery. All patients had a complete set of spinal outcome assessments (ODI and VAS) and self perceived rating of the global and Mcnab criteria. MCID was calculated as defined by Hagg et al. Results. 244 patients of average age 53 years were followed up for 62 months post surgery. The MCID across the range of spinal surgeries was a 10 point change in ODI and 28 points for the VAS. A MCID following lumbar decompression surgery was a 3 point change in ODI and 29 points for VAS; 24 points in ODI and 37 points in the VAS for a discectomy, and 13 points in ODI and 23 point change in VAS for revision surgery. This value also varied depending on the anchor and method used for calculation. Conclusion. The MCID in score varies between different spinal procedures, method of calculation and the external anchor used. Standardised methods of calculating MCID in outcome measures should be used to allow comparative research and assessment. Generalisation of MCID in scores across a range of spinal procedures should be strongly discouraged. Conflicts of Interest. None. Source of Funding. None. This abstract has not been previously published in whole or substantial part nor has it been presented previously at a national meeting


Bone & Joint 360
Vol. 10, Issue 2 | Pages 57 - 59
1 Apr 2021
Evans JT Whitehouse MR Evans JP


Bone & Joint Research
Vol. 6, Issue 11 | Pages 631 - 639
1 Nov 2017
Blyth MJG Anthony I Rowe P Banger MS MacLean A Jones B

Objectives

This study reports on a secondary exploratory analysis of the early clinical outcomes of a randomised clinical trial comparing robotic arm-assisted unicompartmental knee arthroplasty (UKA) for medial compartment osteoarthritis of the knee with manual UKA performed using traditional surgical jigs. This follows reporting of the primary outcomes of implant accuracy and gait analysis that showed significant advantages in the robotic arm-assisted group.

Methods

A total of 139 patients were recruited from a single centre. Patients were randomised to receive either a manual UKA implanted with the aid of traditional surgical jigs, or a UKA implanted with the aid of a tactile guided robotic arm-assisted system. Outcome measures included the American Knee Society Score (AKSS), Oxford Knee Score (OKS), Forgotten Joint Score, Hospital Anxiety Depression Scale, University of California at Los Angeles (UCLA) activity scale, Short Form-12, Pain Catastrophising Scale, somatic disease (Primary Care Evaluation of Mental Disorders Score), Pain visual analogue scale, analgesic use, patient satisfaction, complications relating to surgery, 90-day pain diaries and the requirement for revision surgery.


Bone & Joint Research
Vol. 3, Issue 1 | Pages 7 - 13
1 Jan 2014
Keurentjes JC Van Tol FR Fiocco M So-Osman C Onstenk R Koopman-Van Gemert AWMM Pöll RG Nelissen RGHH

Objectives

To define Patient Acceptable Symptom State (PASS) thresholds for the Oxford hip score (OHS) and Oxford knee score (OKS) at mid-term follow-up.

Methods

In a prospective multicentre cohort study, OHS and OKS were collected at a mean follow-up of three years (1.5 to 6.0), combined with a numeric rating scale (NRS) for satisfaction and an external validation question assessing the patient’s willingness to undergo surgery again. A total of 550 patients underwent total hip replacement (THR) and 367 underwent total knee replacement (TKR).


Bone & Joint Research
Vol. 1, Issue 5 | Pages 71 - 77
1 May 2012
Keurentjes JC Van Tol FR Fiocco M Schoones JW Nelissen RG

Objectives

We aimed first to summarise minimal clinically important differences (MCIDs) after total hip (THR) or knee replacement (TKR) in health-related quality of life (HRQoL), measured using the Short-Form 36 (SF-36). Secondly, we aimed to improve the precision of MCID estimates by means of meta-analysis.

Methods

We conducted a systematic review of English and non-English articles using MEDLINE, the Cochrane Controlled Trials Register (1960–2011), EMBASE (1991–2011), Web of Science, Academic Search Premier and Science Direct. Bibliographies of included studies were searched in order to find additional studies. Search terms included MCID or minimal clinically important change, THR or TKR and Short-Form 36. We included longitudinal studies that estimated MCID of SF-36 after THR or TKR.