Background: Traditionally, it is believed that structural failure of the ischemic epiphysis as well as changes in radiodensity seen in Legg-Calve-Perthes disease are due to repair. Little is known if bone material properties are altered following ischemic necrosis of the juvenile femoral head. Purpose of this study was to determine bone matrix mineralization density, an important determinant of bone quality and strength, in an experimental model of juvenile ischemic osteonecrosis. Methods: Ten piglets were surgically induced with ischemic osteonecrosis and euthanized at 4- and 8 weeks following surgery. Contralateral, unoperated femoral heads were used as controls. Bone
Aims. Gene therapy research in the field of orthopaedics and traumatology have evolved during the last decade, leading to possible applications for the treatment of pathological conditions, such as bone fractures and cartilage defects. In particular, several gene transfer techniques have been employed so far for inducing bone formation in animal models of bone defects. Cell-based approaches, using in vitro and ex vivo genetically modified cells to be implanted in the animal, produced promising results as they enable the production of physiologic doses of an osteoinductive gene product into selected anatomical sites. In this study we used autologous skin fibroblasts, which are very simple to harvest and propagate in culture, transduced ex vivo with the new osteo-genic factor Lim
Matrix-bound vesicles (MBVs) are embedded within osteoid and function as the site of initial mineral formation. However, they remain insufficiently characterised in terms of biogenesis, composition and function while their relationship with secreted culture medium EVs (sEVs) such as exosomes remains debated. We aimed to define the biogenesis and pro-mineralisation capacity of MBVs and sEVs to understand their potential in regenerative orthopaedics. sEVs and MBVs isolated from conditioned medium (differential ultracentrifugation) and ECM (collagenase digestion and differential ultracentrifugation) of mineralising MC3T3 pre-osteoblast and human bone marrow MSC cultures were characterised by nanoparticle tracking analysis, western blotting, nano-flow cytometry, super resolution microscopy (ONI) and TEM. Immunoprecipitated populations positive for alkaline phosphatase (ALP), a putative marker of mineralisation capacity, were also characterised. Collagen binding efficiency was evaluated using MemGlow staining. Results reported were comparative across both cell lines. Western blots indicated MBV fractions were positive for markers of endosomal biogenesis (CD9, CD81, ALIX, TSG101) and pro-mineralising proteins (ALP, Pit1, Annexin II, Annexin V), with Annexin V and CD9 present in immunoprecipitated ALP-positive fractions. MBVs were significantly larger than sEVs (p<0.05) and contained a higher amount of ALP (p<0.05) with a significant increase from day 7 to day 14 of cellular mineralisation (p<0.05). This mirrored the pattern of electron-dense vesicles seen via TEM. Super resolution single vesicle analysis revealed for the first-time co-expression of ALP with markers of endosomal biogenesis (CD9, CD63, CD81, ALIX) and Annexin II in both vesicle types, with higher co-expression percentage in MBVs than sEVs. MBVs also exhibited preferential collagen binding. Advanced imaging methods demonstrated that contrary to opinions in the field, MBVs appear to possess exosomal markers and may arise via endosomal biogenesis. However, it was evident that a higher proportion of MBVs possessed machinery to induce mineralisation and were enriched in mineral-dense material.
The implantation of endoprosthesis is a routine procedure in orthopaedics. Endoprosthesis are mainly manufactured from ceramics, polymers, metals or metal alloys. To ensure longevity of the implants they should be as biocompatible as possible and ideally have antibacterial properties, to avoid periprosthetic joint infections (PJI). Various antibacterial implant materials have been proposed, but have so far only been used sporadically in patients. PJI is one of the main risk factors for revision surgeries. The aim of the study was to identify novel implant coatings that both exhibit antibacterial properties whilst having optimal biocompatibility. Six different novel implant coatings and surface modifications (EBM TiAl6V4, strontium, TiCuN, TiNbN, gentamicin phosphate (GP), gentamicin phosphate+cationic polymer (GP+CP)) were compared to standard CoCrMo-alloy. The coatings were further characterized with regard to the surface roughness. All novel coatings showed reduced bacterial proliferation and viability compared to standard CoCrMo-alloy. A significant reduction was observed for GP and GP+CP coated samples compared to CoCrMo (ODGP, The preliminary data indicates that the gentamicin containing surfaces have the most effective antibacterial property and the highest osseointegrative capacity. The use of antibiotic coatings on prostheses could reduce the risk of PJI while being applied on osseointegrative implant surfaces.
Implant-associated infection usually require prolonged treatment or even removal of the implant. Local application of antibiotics is used commonly in orthopaedic and trauma surgery, as it allows reaching higher concentration in the affected compartment, while at the same time reducing systematic side effects. Ceftriaxone release from calcium sulphate has a particularly interesting, near-constant release profile in vitro, making it an interesting drug for clinical application. Purpose of the present study was to investigate the potential cytotoxicity of different ceftriaxone concentrations and their influence on osteogenic differentiation of human pre-osteoblasts. Human pre-osteoblasts were cultured up to 28 days in different ceftriaxone concentrations, ranging between 0 mg/L and 50’000 mg/L. Cytotoxicity was determined quantitatively by measuring lactate dehydrogenase release, metabolic activity, and cell proliferation. Gene expression analysis of bone-specific markers as well as mineralization and protein expression of collagen-I (Col-I) were investigated to assess osteogenic differentiation.Aim
Method
Engineered cartilage is poorly organized and fails to recapitulate physiologic organization in a hyaline upper and a mineralizing bottom zone deemed important for proper function. Objective was to grow bizonal human cartilage constructs in which
Heterotopic ossification (HO) is lamellar bone formation in the soft tissues following trauma or joint replacement for osteoarthritis (OA). A genome wide association study of HO patients after total hip arthroplasty for OA has identified Kinesin Family Member 26B (KIF26B) as a gene associated with HO severity. KIF26B has previously been associated with HO in mice. Hypothesis and aims: We hypothesised that Kif26b regulates the osteogenic trans-differentiation of myoblasts; a possible mechanism of HO. Using an We developed CRISPR/Cas9 mediated Kif26b knockout (KO) C2C12 myoblasts. Wild type (WT) and KO cells were transdifferentiated towards an osteogenic lineage using BMP-2 for 24 days. The effect of Kif26b KO on mineralisation was quantified by calcium staining. The mean difference (±SEM) in gene expression between WT and KO lines was compared with ANOVA.Background
Methods
Osteophyte deposition and subchondral bone damage are notable features of osteoarthritis (OA). Deregulated mineralization contributes to osteophyte and subchondral irregularity. The microRNA-29 (miR-29) family is associated with arthritic disorders. This study is aimed to investigate miR-29a function to OA osteophyte formation and subchondral integrity. Intact and damaged articular cartilage in patients with end-stage knee OA who required total knee arthroplasty were harvested to probe miR-29a, cartilage, and mineralized matrix expression using RT-PCR and in situ hybridization. Osteophyte volume and subchondral morphometry of collagenase-induced OA knees in mice were quantified using μCT and histomorphometry. Increased bone matrix expression (collagen I and bone alkaline phosphatase) and reduced cartilage matrix (collagen II and aggrecan) along with low miR-29a expression existed in human OA specimens. Aged miR-29a knockout mice showed spontaneous osteophyte formation and articular cartilage erosion. In primary articular chondrocytes, miR-29a deficiency significantly reduced cartilage matrix synthesis, whereas von Kossa staining-positive mineralized matrix production was increased. Of interest, the severity of collagenase-induced osteophyte accumulation and subchondral damage along with serum cartilage breakdown products CTX-II and COMP levels were significantly compromised in mice overexpressing miR-29a. Intra-articularly injecting miR-29a significantly reduced osteophyte volume and subchondral integrity and retained cartilage morphology in collagenase-injured knees. Reduced miR-29a signalling worsens osteophyte and subchondral destruction in OA through increasing mineralized matrix formation of chondrocytes. Restoring miR-29a shields joints from cartilage degradation, osteophyte and subchondral destruction. This study conveys new mechanistic underlying OA osteophyte pathogenesis and shines light on the remedial potential of miR-29a to OA.
During remodelling, osteoclasts produce discrete bone cavities filled with bone and this is associated with the dimensions of the cavity. The aim of this study is to investigate the effect of pores of similar size to those produced by osteoclasts on the morphology, proliferation and osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs) in vitro. The hypothesis is that a porous surface similar in morphology to a bone surface prepared by osteoclasts will increase cell proliferation and osteogenic differentiation of MSCs. Sheep BMSCs were seeded onto plain titanium surfaces and 100µm, 250µm and 500µm discrete pores surfaces. Cell metabolic activity was investigated using Presto Blue on days 3, 7 and 10. Bone mineralisation was quantified by Alizarin red staining at days 3, 7 and 14. Cell morphology was observed by scanning electron microscopy (SEM). Data was statistically analysed using one-way analysis of variance and a Bonferroni correction method. Cells on porous discs had a three dimensional phenotype and aligned on the circumference of each pore. Metabolic activity was significantly higher by day 10 on plain discs compared to all porous discs. Bone mineralization was significantly higher on 100µm pores by day 3 (0.545mM±0.66; p=0.047) than plain discs and significantly higher on both 100µm and 250µm pores by day 7(p=0.000 and p=0.005) than plain discs. Substantial mineralised bone matrix was found on 100µm discs without being treated with osteogenic supplements, compared to other control disc types (p=0.043, p=0.003, p=0.000). The different topographies altered cell behaviour and migration.100µm pores demonstrated earlier and enhanced bone mineralisation even in the absence of osteogenic supplements. This pore size is aligned to the size of individual resorption bays that osteoclasts produce on bone surfaces and is considerably lower than the pore sizes used to enhance osteo-integration of implant surfaces.
Bone regeneration during treatment of staphylococcal bone infection is challenging due to the ability of The human osteoblast-like Saos-2 cells infected with Aims
Methods
Despite its intrinsic ability to regenerate form and function after injury, bone tissue can be challenged by a multitude of pathological conditions. While innovative approaches have helped to unravel the cascades of bone healing, this knowledge has so far not improved the clinical outcomes of bone defect treatment. Recent findings have allowed us to gain in-depth knowledge about the physiological conditions and biological principles of bone regeneration. Now it is time to transfer the lessons learned from bone healing to the challenging scenarios in defects and employ innovative technologies to enable biomaterial-based strategies for bone defect healing. This review aims to provide an overview on endogenous cascades of bone material formation and how these are transferred to new perspectives in biomaterial-driven approaches in bone regeneration. Cite this article: T. Winkler, F. A. Sass, G. N. Duda, K. Schmidt-Bleek. A review of biomaterials in bone defect healing, remaining shortcomings and future opportunities for bone tissue engineering: The unsolved challenge.
Aims. Continuous local antibiotic perfusion (CLAP) has recently attracted attention as a new drug delivery system for orthopaedic infections. CLAP is a direct continuous infusion of high-concentration gentamicin (1,200 μg/ml) into the bone marrow. As it is a new system, its influence on the bone marrow is unknown. This study aimed to examine the effects of high-concentration antibiotics on human bone tissue-derived cells. Methods. Cells were isolated from the bone tissue grafts collected from six patients using the Reamer-Irrigator-Aspirator system, and exposed to different gentamicin concentrations. Live cells rate, apoptosis rate, alkaline phosphatase (ALP) activity, expression of osteoblast-related genes, mineralization potential, and restoration of cell viability and ALP activity were examined by in vitro studies. Results. The live cells rate (the ratio of total number of cells in the well plate to the absorbance-measured number of live cells) was significantly decreased at ≥ 500 μg/ml of gentamicin on day 14; apoptosis rate was significantly increased at ≥ 750 μg/ml, and ALP activity was significantly decreased at ≥ 750 μg/ml. Real-time reverse transcription-polymerase chain reaction results showed no significant decrease in the ALP and activating transcription factor 4 transcript levels at ≥ 1,000 μg/ml on day 7.
Bone homeostasis is a highly regulated process involving pathways in bone as WNT, FGF or BMP, but also requiring support from surrounding tissues as vessels and nerves. In bone diseases, the bone-vessel-nerve triad is impacted. Recently, new players appeared as regulators of bone homeostasis: microRNAs (miRNA). Five miRNAs associated with osteoporotic fractures are already known, among which miR-125b is decreasing bone formation by downregulating human mesenchymal stem cells (hMSCs) differentiation. Other miRNAs, as miR-214 (in cluster with miR-199a), are secreted by osteoclasts to regulate osteoblasts and inhibit bone formation. This forms a very complex regulatory network. hMSCs and osteoblasts (n=3) were transfected with mimic/antagomiR of miR-125b, miR-199a-5p or miR-214, or with a scrambled miRNA (negative control) in osteogenic differentiation calcium-enriched medium (Ca++).
Aim: To describe the radiographic findings of soft tissue sarcoma. Materials and Method: The retrospective review of 100 consecutive patients with a histological diagnosis of primary soft tissues sarcoma of the extremities. Results: Fifty five patients had plain radiographs at initial presentation. This was mainly due to the fact that most patients were tertiary referrals or had other initial imaging. Histological diagnosis in these patients was: liposarcoma in 24 patients, leiomyosarcoma in 8, undifferentiated spindle cell sarcoma in 5, malignant schwannoma in 4, synovial sarcoma in 4, MFH in 2, fibrosarcoma in 2, haemangiopericytoma, epithelioid sarcoma, malignant GCT, melanoma and spindle cell histiocytoma in one. The upper limb was involved in 18 patients and the lower limb was involved in 37. Thirty-five (63.6%) patients had a visible soft tissue mass on plain film. Eleven had mineralisation within the soft tissue mass and seven had either bone involvement or periosteal response. Those with a distinct soft tissue mass and evidence of fat content on plain film were noted to be diagnosis of liposarcoma in 86.7% of the cases.
Chondrogenic differentiation and cartilage homeostasis requires a high cellular translational capacity to meet the demands for cartilaginous extracellular matrix production. Box C/D and H/ACA snoRNAs guide post-transcriptional 2′-O ribose methylation and pseudouridylation of specific ribosomal RNA (rRNA) nucleotides, respectively. How specific rRNA modifications influence rRNA function is poorly documented, but modifications are thought to tune rRNA folding and interaction with ribosomal proteins, which is critical for ribosome function. We hypothesise that chondrocyte translational capacity is supported by snoRNA-mediated post-transcriptional fine-tuning of rRNAs. ATDC5 progenitor cells were differentiated into the chondrogenic lineage, resembling mature and mineralising chondrocytes after 7 or 14 days, respectively. UBF-1 (rRNA transcription factor), fibrillarin (box C/D methyltransferase) and dyskerin (box H/ACA pseudouridylase) expression displayed highest fold induction at day 5/6 in differentiation. Ribosomal RNA content per cell was increased at day 7, but not at day 14 in differentiation. These data suggest that ribosome biogenesis adapts to the chondrocyte's differentiation status. RNA-Seq of RNA species <200 nt revealed expression of at least 224 individual snoRNAs. Due to initiation of chondrogenic differentiation (Δt0-t7), 21 snoRNAs were differentially expressed (DE; FDRadj-p<0.05, logFC>1or<−1).
To regenerate the complex tissue such as bone-cartilage construct using tissue engineering approaches, controllable differentiation of mesenchymal stem cells (BMSCs) into chondrogenic and osteogenic lineages is crucially important. Although bilayered scaffolds have been investigated in vitro and in vivo, no culture system is available to test BMSCs differentiation into bone and cartilage simultaneously in bilayered scaffolds. This study investigated a defined culture media, which supported osteoblast and chondrocyte differentiation depending on growth factors implemented in biomaterials. In 2-dimensional culture, BMSCs differentiated to chondrocytes when transforming growth factor-beta 3 (TGF-β3) was added to the defined media, whereas osteogenic differentiation was induced by adding bone morphogenetic protein 7 (BMP-7). BMSC differentiation to osteogenic and chondrogenic lineages was further strengthen in 3-dimensional culture. Proteoglycan formation, type II collagen, and aggrecan were upregulated in the defined media when BMSCs were mixed with fibrin gel impregnated with TGF-β3.
SBA-15 is a siliceous mesoporous ordered material with hexagonal arrangement of 9-nm tubular pores connected by micropores, high pore volume and abundance of silanol groups. This functionalised material could thus tailor the release kinetics of specific biomolecules to the clinical needs. Non-functionalized SBA-15 and its C8- or C3-alkyl-derivatives were coated with parathyroid hormone–related protein (PTHrP)(107–111) to assess their relative effects on osteoblastic cell growth and function. SBA-15 was functionalized with either octyl or propyl trimethoxysilane (C8 or C3 precursor, respectively) in ACN for 24h and then were coated (or not) by dipping in 10 nM PTHrP (107–111) solution for 24 h at 4°C. After air drying, biomaterials were transferred to culture dishes. MC3T3-E1 cells were cultured in differentiation medium with SBA-15, C3-SBA-15 and C8-SBA-15, loaded or not with the peptide. Cell viability and proliferation were evaluated by trypan blue exclusion and a proliferation kit (Promega), respectively. Alkaline phosphatase (ALP) activity and collagen secretion were determined by colorimetric methods. Gene expression was analyzed by real-time PCR.
The “2 to 10% strain rule” for fracture healing has been widely interpreted to mean that interfragmentary strain greater than 10% predisposes a fracture to nonunion. This interpretation focuses on the gap-closing strain (axial micromotion divided by gap size), ignoring the region around the gap where osteogenesis typically initiates. The aim of this study was to measure gap-closing and 3D interfragmentary strains in plated ovine osteotomies and associate local strain conditions with callus mineralization. MicroCT scans of eight female sheep with plated mid-shaft tibial osteotomies were used to create image-based finite element models. Virtual mechanical testing was used to compute postoperative gap-closing and 3D continuum strains representing compression (volumetric strain) and shear deformation (distortional strain). Callus mineralization was measured in zones in and around the osteotomy gap.Aims
Methods