The scarcity of
Reconstruction of 10mm segmental bone defects in rat by
Purpose. The purpose of this study was to evaluate the effects of implantation of
The role of
We hypothesise that the Masquelet induced membrane used for the reconstruction of large bone defects were likely to involve
As arthroplasty demand grows worldwide, the need for a novel cost-effective treatment option for articular cartilage (AC) defects tailored to individual patients has never been greater. 3D bioprinting can deposit patient cells and other biomaterials in user-defined patterns to build tissue constructs from the “bottom-up,” potentially offering a new treatment for AC defects. Novel composite bioinks were created by mixing different ratios of methacrylated alginate (AlgMA) with methacrylated gelatin (GelMA) and collagen. Chondrocytes and
Introduction. Iliac crest bone marrow aspirate (ICBMA) is frequently cited as the ‘gold-standard’ source of MSCs.
Objectives. Nonunion is one of the most troublesome complications to treat
in orthopaedics. Former authors believed that atrophic nonunion
occurred as a result of lack of
Bone is the second most commonly transplanted tissue worldwide, with over four million operations using bone grafts or bone substitute materials annually to treat bone defects. However, significant limitations affect current treatment options and clinical demand for bone grafts continues to rise due to conditions such as trauma, cancer, infection and arthritis. The need for a novel, cost effective treatment option for osteochondral defects has therefore never been greater. As an emerging technology, three-dimensional (3D) bioprinting has the capacity to deposit cells, extracellular matrices and other biological materials in user-defined patterns to build complex tissue constructs from the “bottom up”. Through use of extrusion bioprinting and fused deposition modelling (FDM) 3D printing, porous 3D scaffolds were successfully created in this study from hydrogels and synthetic polymers.
Our unpublished data has indicated that the perivascular stem cells (PSCs) have increased chondrogenic potential compared to
Perivascular stem cells (PSCs) from lipoaspirate demonstrate increased purity and immaturity with greater engraftment potential than standard
Adipose tissue is an attractive source of
Perivascular stem cells (PSCs) from lipoaspirate demonstrate increased purity and immaturity with greater engraftment potential than standard
Nanoscale topography increases the bioactivity of a material and stimulates specific responses (third generation biomaterial properties) at the molecular level upon first generation (bioinert) or second generation (bioresorbable or bioactive) biomaterials. We developed a technique (based upon the effects of nanoscale topography) that facilitated the in vitro expansion of bone graft for subsequent implantation and investigated the optimal conditions for growing new mineralised bone in vitro. Two topographies (nanopits and nanoislands) were embossed into the bioresorbable polymer Polycaprolactone (PCL). Three dimensional cell culture was performed using double-sided embossing of substrates, seeding of both sides, and vertical positioning of substrates. The effect of Hydroxyapatite, and chemical stimulation were also examined. Human bone marrow was harvested from hip arthroplasty patients, the
Exercise deters systemic diseases such as osteoporosis, sarcopenia, diabetes and obesity. Brief daily periods of low intensity vibration (LIV; <0.4g) is anabolic to bone and muscle, an adaptive response achieved in part by biasing
Introduction. Nonunions pose complications in fracture management that can be treated using electrical stimulation (ES). Bone marrow
Engineered bone tissue to recreate the continuity of damaged skeletal segments is one of the field of interest of tissue engineering. Trabecular titanium has very good mechanical properties and high in vitro and in vivo biocompatibility: it can be used in biomedical applications to promote osteointegration demonstrating that it can be successfully used for regenerative medicine in orthopaedic surgery (1). Purpose of this investigation was to evaluate the behavior of adipose tissue derived stem cells (hASCs) cultured on scaffolds of Trabecular TitaniumTM (Lima-Lto) (TT). hASCs are considered to be multipotent
Introduction. Regenerative medicine is a rapidly expanding discipline. However due to a lack of validated outcome measures, clinical trials have been far few. This study aims to assess the validity, inter-observer reliability and intra-observer reproducibility of experimental fracture healing assessment on plain radiographies. This technique involves implantation of
Heterotopic ossification (HO) is a common complication after elbow trauma and can cause severe upper limb disability. Although multiple prognostic factors have been reported to be associated with the development of post-traumatic HO, no model has yet been able to combine these predictors more succinctly to convey prognostic information and medical measures to patients. Therefore, this study aimed to identify prognostic factors leading to the formation of HO after surgery for elbow trauma, and to establish and validate a nomogram to predict the probability of HO formation in such particular injuries. This multicentre case-control study comprised 200 patients with post-traumatic elbow HO and 229 patients who had elbow trauma but without HO formation between July 2019 and December 2020. Features possibly associated with HO formation were obtained. The least absolute shrinkage and selection operator regression model was used to optimize feature selection. Multivariable logistic regression analysis was applied to build the new nomogram: the Shanghai post-Traumatic Elbow Heterotopic Ossification Prediction model (STEHOP). STEHOP was validated by concordance index (C-index) and calibration plot. Internal validation was conducted using bootstrapping validation.Aims
Methods