header advert
Orthopaedic Proceedings Logo

Receive monthly Table of Contents alerts from Orthopaedic Proceedings

Comprehensive article alerts can be set up and managed through your account settings

View my account settings

Visit Orthopaedic Proceedings at:

Loading...

Loading...

Full Access

Trauma

THE MASQUELET TECHNIQUE INDUCES THE FORMATION OF A MESENCHYMAL STEM CELL RICH PERIOSTEUM LIKE MEMBRANE

International Society for Fracture Repair (ISFR)



Abstract

We hypothesise that the Masquelet induced membrane used for the reconstruction of large bone defects were likely to involve mesenchymal stem cells (MSCs), given the excellent resultant skeletal repair. This study represents the first characterisation in humans of the induced membrane formed as a result of the Masquelet technique.

Methods

Induced membranes and matching periosteum were harvested from 7 patients. Cytokines (BMP2, VEGF, SDF1) and cell lineage markers (CD31, CD271, CD146) were studied by immunohistochemisty. Flow cytometry was used to measure the cellularity and cellular composition. MSCs were enumerated using a colony forming unit fibroblast assay. In expanded cultures, a 96-gene array card was used to assess their transcriptional profile. Alkaline phophatase, alizarin red and calcium assays were employed to measure their in vitro osteogenic potential

Results

Membrane was more cellular(p=0.028), had more MSC phenotype(p=0.043) compared to matched periosteum. The molecular profiles were similar, except for 2-fold abundance of SDF-1 in membrane (p=0.043)compared to periosteum. Membrane and periosteum had a similar proportion of endothelial cells and CFU-F colonies; expanded MSCs from both sources were highly osteogenic.

Discussion

These results indicate that the induced membrane possesses a rich source of MSC and therefore our findings support the view that the induced membrane plays an active role in bone regeneration.