Advertisement for orthosearch.org.uk
Results 1 - 20 of 24
Results per page:
Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_13 | Pages 61 - 61
1 Dec 2022
Shah A Abbas A Lex J Hauer T Abouali J Toor J
Full Access

Knee arthroscopy with meniscectomy is the third most common Orthopaedic surgery performed after TKA and THA, comprising up to 16.6% of all procedures. The efficiency of Orthopaedic care delivery with respect to waiting times and systemic costs is extremely concerning. Canadian Orthopaedic patients experience the longest wait times of any G7 country, yet perioperative surgical care constitutes a significant portion of a hospital's budget. In-Office Needle Arthroscopy (IONA) is an emerging technology that has been primarily studied as a diagnostic tool. Recent evidence shows that it is a cost-effective alternative to hospital- and community-based MRI with comparable accuracy. Recent procedure guides detailing IONA medial meniscectomy suggest a potential node for OR diversion. Given the high case volume of knee arthroscopy as well as the potential amenability to be diverted away from the OR to the office setting, IONA has the potential to generate considerable improvements in healthcare system efficiency with respect to throughput and cost savings. As such, the purpose of this study is to investigate the cost savings and impact on waiting times on a mid-sized Canadian community hospital if IONA is offered as an alternative to traditional operating room (OR) arthroscopy for medial meniscal tears. In order to develop a comprehensive understanding and accurate representation of the quantifiable operations involved in the current state for medial meniscus tear care, process mapping was performed that describes the journey of a patient from when they present with knee pain to their general practitioner until case resolution. This technique was then repeated to create a second process map describing the hypothetical proposed state whereby OR diversion may be conducted utilizing IONA. Once the respective process maps for each state were determined, each process map was translated into a Dupont decision tree. In order to accurately determine the total number of patients which would be eligible for this care pathway at our institution, the OR booking scheduling for arthroscopy and meniscectomy/repair over a four year time period (2016-2020) were reviewed. A sensitivity analysis was performed to examine the effect of the number of patients who select IONA over meniscectomy and the number of revision meniscectomies after IONA on 1) the profit and profit margin determined by the MCS-Dupont financial model and 2) the throughput (percentage and number) determined by the MCS-throughput model. Based on historic data at our institution, an average of 198 patients (SD 31) underwent either a meniscectomy or repair from years 2016-2020. Revenue for both states was similar (p = .22), with the current state revenue being $ 248,555.99 (standard deviation $ 39,005.43) and proposed state of $ 249,223.86 (SD $ 39,188.73). However, the reduction in expenses was significant (p < .0001) at 5.15%, with expenses in the current state being $ 281,415.23 (SD $ 44,157.80) and proposed state of $ 266,912.68 (SD $ 42,093.19), representing $14,502.95 in savings. Accordingly, profit improvement was also significant (p < .0001) at 46.2%, with current state profit being $ (32,859.24) (SD $ 5,153.49) and proposed state being $ (17,678.82) (SD $ 2,921.28). The addition of IONA into the care pathway of the proposed state produced an average improvement in throughput of 42 patients (SD 7), representing a 21.2% reduction in the number of patients that require an OR procedure. Financial sensitivity analysis revealed that the proposed state profit was higher than the current state profit if as few as 10% of patients select IONA, with the maximum revision rate needing to remain below 40% to achieve improved profits. The most important finding from this study is that IONA is a cost-effective alternative to traditional surgical arthroscopy for medial meniscus meniscectomy. Importantly, IONA can also be used as a diagnostic procedure. It is shown to be a cost-effective alternative to MRI with similar diagnostic accuracy. The role of IONA as a joint diagnostic-therapeutic tool could positively impact MRI waiting times and MRI/MRA costs, and further reduce indirect costs to society. Given the well-established benefit of early meniscus treatment, accelerating both diagnosis and therapy is bound to result in positive effects


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_II | Pages 97 - 97
1 Feb 2012
Hart A Dowd G
Full Access

Early stabilisation after an anterior cruciate ligament (ACL) rupture reduces future meniscal injury. We may therefore expect protection of articular cartilage from ACL reconstruction, but this has yet to be shown.

Our aim wasto determine the effect of meniscal injury on the long term risk of osteoarthritis (OA) following ACL reconstruction using Single Photon Emission Computed Tomography (SPECT, a 3 dimensional radionuclide scan).

We studied a prospective series of 31 patients (mean age at injury of 29 years) who had bone-patellar tendon-bone ACL reconstruction for unstable, ACL deficient knees. Mean follow-up was 10 years (range 9-13). Patients were separated into two groups according to the status of their menisci at the time of ACL reconstruction, those with intact menisci in group 1 (n=15) and those who required partial meniscectomy in group 2 (n=16). The contra-lateral normal knee was used as a control.

All knees were clinically stable with high clinical scores (mean Lysholm score 93 and mean Tegner activity score 6). In group 1 (intact menisci) only one patient (7%) had clinical symptoms of OA and was the only patient with increased uptake on SPECT compatible with early OA. In group 2 (partial meniscectomy), two had clinical symptoms of osteoarthritis, and five patients (32%) had increased uptake on SPECT compatible with early OA. None of the control knees had early OA on SPECT.

The prevalence of OA 10 years post ACL reconstruction, using the most sensitive investigation available, is very low in patients who had intact menisci (7%), but increases 5 fold (32%) if a meniscal tear was present. We recommend early ACL reconstruction to preserve the menisci to minimise the long term risk of OA.


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_14 | Pages 10 - 10
23 Jul 2024
Al-hasani F Mhadi M
Full Access

Meniscal tears commonly co-occur with ACL tears, and many studies address their side, pattern, and distribution. Few studies assess the patient's short-term functional outcome concerning tear radial and circumferential distribution based on the Cooper et al. classification. Meniscal tears require primary adequate treatment to restore knee function. Our hypothesis is to preserve the meniscal rim as much as possible to maintain the load-bearing capacity of the menisci after meniscectomy. The purpose of this study is to document the location and type of meniscal tears that accompany anterior cruciate ligament (ACL) tears and their effect on patient functional outcomes following arthroscopic ACL reconstruction and meniscectomy. This prospective cross-sectional observational study was conducted at AL-BASRA Teaching Hospital in Iraq between July 2018 and January 2020 among patients with combined ipsilateral ACL injury and meniscal tears. A total of 28 active young male patients, aged 18 to 42 years, were included. All patients were subjected to our questionnaire, full history, systemic and regional examination, laboratory investigations, imaging studies, preoperative rehabilitation, and were followed by Lysholm score 6 months postoperatively. All 28 patients were males, with a mean age of 27 ± 0.14 years. The right knee was the most commonly affected in 20/28 patients (71.4%). The medial meniscus was most commonly injured in 11 patients, 7 patients had lateral meniscal tears, and 10 patients had tears in both menisci. The most common tear pattern of the medial meniscus was a bucket handle tear (36.4%), while longitudinal tears were the most frequent in the lateral meniscus (71.4%) (P-value = 0.04). The most common radial tear location was zone E-F (5/28, 17.8%), and the most common circumferential zone affected was the middle and inner third, reported in 50% of tears. Good and excellent outcomes using the Lysholm score after 6 months were obtained in 42.9% and 17.9% of patients, respectively. Better functional scores were associated with lateral meniscal tears, bucket handle tears, tears extending to a more peripheral vascular area, and if no more than one-third of the meniscus was resected (P-value = 0.002). Less favourable outcomes were reported in smokers, posterior horn tears, and when surgery was delayed more than 1 year (P-value = 0.03). We conclude that there is a negative correlation between the amount of meniscus resected and functional outcome. Delayed ACL reconstruction increases the risk of bimeniscal tears. Bucket handle tears are the most common tears, mostly in the medial meniscus, while longitudinal tears are most common in the lateral meniscus. We recommend performing early ACL reconstruction within 12 months to reduce the risk of bimeniscal injuries


Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_13 | Pages 72 - 72
1 Dec 2022
Lamer S Ma Z Mazy D Chung-Tze-Cheong C Nguyen A Li J Nault M
Full Access

Meniscal tears are the most common knee injuries, occurring in acute ruptures or in chronic degenerative conditions. Meniscectomy and meniscal repair are two surgical treatment options. Meniscectomy is easier, faster, and the patient can return to their normal activities earlier. However, this procedure has long-term consequences in the development of degenerative changes in the knee, potentially leading to knee replacement. On the other hand, meniscal repair can offer prolonged benefits to the patients, but it is difficult to perform and requires longer rehabilitation. Sutures are used for meniscal repairs, but they have limitations. They induce tissue damage when passing through the meniscus. Furthermore, under dynamic loading of the knee, they can cause tissue shearing and potentially lead to meniscal repair failure. Our team has developed a new technology of resistant adhesive hydrogels to coat the suture used to repair meniscal tissue. The objective of this study is to biomechanically compare two suture types on bovine menisci specimens: 1) pristine sutures and 2) gel adhesive puncture sealing (GAPS) sutures, on a repaired radial tear under cyclic tensile testing. Five bovine knees were dissected to retrieve the menisci. On the 10 menisci, a complete radial tear was performed. They were separated in two groups and repaired using either pristine (2-0 Vicryl) or GAPS (2-0 Vicryl coated with adhesive hydrogels) with a single stitch and five knots. The repaired menisci were clamped on an Instron machine. The specimens were cyclically preconditioned between one and 10 newtons for 10 cycles and then cyclically loaded for 500 cycles between five and 25 newtons at a frequency of 0.16 Hz. The gap formed between the edges of the tear after 500 cycles was then measured using an electronic measurement device. The suture loop before and after testing was also measured to ensure that there was no suture elongation or loosening of the knot. The groups were compared statistically using Mann-Whitney tests for nonparametric data. The level of significance was set to 0.05. The mean gap formation of the pristine sutures was 5.61 mm (SD = 2.097) after 500 cycles of tensile testing and 2.38 mm (SD = 0.176) for the GAPS sutures. Comparing both groups, the gap formed with the coated sutures was significantly smaller (p = 0.009) than with pristine sutures. The length of the loop was equal before and after loading. Further investigation of tissue damage indicated that the gap was formed by suture filament cutting into the meniscal tissue. The long-term objective of this research is to design a meniscal repair toolbox from which the surgeon can adapt his procedure for each meniscal tear. This preliminary experimentation on bovine menisci is promising because the new GAPS sutures seem to keep the edges of the meniscal tear together better than pristine sutures, with hopes of a clinical correlation with enhanced meniscal healing


Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_12 | Pages 66 - 66
1 Dec 2022
Lamer S Ma Z Mazy D Chung-Tze-Cheong C Nguyen A Li J Nault M
Full Access

Meniscal tears are the most common knee injuries, occurring in acute ruptures or in chronic degenerative conditions. Meniscectomy and meniscal repair are two surgical treatment options. Meniscectomy is easier, faster, and the patient can return to their normal activities earlier. However, this procedure has long-term consequences in the development of degenerative changes in the knee, potentially leading to knee replacement. On the other hand, meniscal repair can offer prolonged benefits to the patients, but it is difficult to perform and requires longer rehabilitation. Sutures are used for meniscal repairs, but they have limitations. They induce tissue damage when passing through the meniscus. Furthermore, under dynamic loading of the knee, they can cause tissue shearing and potentially lead to meniscal repair failure. Our team has developed a new technology of resistant adhesive hydrogels to coat the suture used to repair meniscal tissue. The objective of this study is to biomechanically compare two suture types on bovine menisci specimens: 1) pristine sutures and 2) gel adhesive puncture sealing (GAPS) sutures, on a repaired radial tear under cyclic tensile testing. Five bovine knees were dissected to retrieve the menisci. On the 10 menisci, a complete radial tear was performed. They were separated in two groups and repaired using either pristine (2-0 Vicryl) or GAPS (2-0 Vicryl coated with adhesive hydrogels) with a single stitch and five knots. The repaired menisci were clamped on an Instron machine. The specimens were cyclically preconditioned between one and 10 newtons for 10 cycles and then cyclically loaded for 500 cycles between five and 25 newtons at a frequency of 0.16 Hz. The gap formed between the edges of the tear after 500 cycles was then measured using an electronic measurement device. The suture loop before and after testing was also measured to ensure that there was no suture elongation or loosening of the knot. The groups were compared statistically using Mann-Whitney tests for nonparametric data. The level of significance was set to 0.05. The mean gap formation of the pristine sutures was 5.61 mm (SD = 2.097) after 500 cycles of tensile testing and 2.38 mm (SD = 0.176) for the GAPS sutures. Comparing both groups, the gap formed with the coated sutures was significantly smaller (p = 0.009) than with pristine sutures. The length of the loop was equal before and after loading. Further investigation of tissue damage indicated that the gap was formed by suture filament cutting into the meniscal tissue. The long-term objective of this research is to design a meniscal repair toolbox from which the surgeon can adapt his procedure for each meniscal tear. This preliminary experimentation on bovine menisci is promising because the new GAPS sutures seem to keep the edges of the meniscal tear together better than pristine sutures, with hopes of a clinical correlation with enhanced meniscal healing


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_3 | Pages 60 - 60
23 Feb 2023
Rahardja R Love H Clatworthy M Young S
Full Access

Meniscal repairs are commonly performed during anterior cruciate ligament (ACL) reconstruction. This study aimed to identify the risk factors for meniscal repair failure following concurrent primary ACL reconstruction. Primary ACL reconstructions with a concurrent repair of a meniscal tear recorded in the New Zealand ACL Registry between April 2014 and December 2018 were analyzed. Meniscal repair failure was defined as a patient who underwent subsequent meniscectomy, and was identified after cross-referencing data from the ACL Registry with the national database of the Accident Compensation Corporation (ACC). Multivariate Cox regression was performed to produce hazard ratios (HR) with 95% confidence intervals (CI) to identify the patient and surgical risk factors for meniscal repair failure. 2041 meniscal repairs were analyzed (medial = 1235 and lateral = 806). The overall failure rate was 9.4% (n = 192). Failure occurred in 11.1% of medial (137/1235) and 6.8% of lateral (55/806) meniscal repairs. The risk of medial failure was higher with hamstring tendon autografts (adjusted HR = 2.00, 95% CI 1.23 – 3.26, p = 0.006) and in patients with cartilage injury in the medial compartment (adjusted HR = 1.56, 95% CI 1.09 – 2.23, p = 0.015). The risk of lateral failure was higher when the procedure was performed by a surgeon with an annual case volume of less than 30 ACL reconstructions (adjusted HR = 1.92, 95% CI 1.10 – 3.33, p = 0.021). Age, gender, time from injury-to-surgery and femoral tunnel drilling technique did not influence the risk of meniscal repair failure. When repairing a meniscal tear during ACL reconstruction, the use of a hamstring tendon autograft or the presence of cartilage injury in the medial compartment increases the risk of medial meniscal repair failure. Lower surgeon case volume increases the risk of lateral meniscal repair failure


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_8 | Pages 31 - 31
10 May 2024
Clatworthy M Rahardja R Young S Love H
Full Access

Background. Anterior cruciate ligament (ACL) reconstruction with concomitant meniscal injury occurs frequently. Meniscal repair is associated with improved long-term outcomes compared to resection but is also associated with a higher reoperation rate. Knowledge of the risk factors for repair failure may be important in optimizing patient outcomes. Purpose. This study aimed to identify the patient and surgical risk factors for meniscal repair failure, defined as a subsequent meniscectomy, following concurrent primary ACL reconstruction. Methods. Data recorded by the New Zealand ACL Registry and the Accident Compensation Corporation, the New Zealand Government's sole funder of ACL reconstructions and any subsequent surgery, was reviewed. Meniscal repairs performed with concurrent primary ACL reconstruction was included. Root repairs were excluded. Univariate and multivariate survival analysis was performed to identify the patient and surgical risk factors for meniscal repair failure. Results. Between 2014 and 2020, a total of 3,024 meniscal repairs were performed during concurrent primary ACL reconstruction (medial repair = 1,814 and lateral repair = 1,210). The overall failure rate was 6.6% (n = 201) at a mean follow-up of 2.9 years, with a failure occurring in 7.8% of medial meniscal repairs (142 out of 1,814) and 4.9% of lateral meniscal repairs (59 out of 1,210). The risk of medial failure was higher in patients with a hamstring tendon autograft (adjusted HR = 2.20, p = 0.001), patients aged 21–30 years (adjusted HR = 1.60, p = 0.037) and in those with cartilage injury in the medial compartment (adjusted HR = 1.75, p = 0.002). The risk of lateral failure was higher in patients aged ≤ 20 years (adjusted HR = 2.79, p = 0.021) and when the procedure was performed by a surgeon with an annual ACL reconstruction case volume of less than 30 (adjusted HR = 1.84, p = 0.026). Conclusion. When performing meniscal repair during a primary ACL reconstruction, the use of a hamstring tendon autograft, younger age and the presence of concomitant cartilage injury in the medial compartment increases the risk of medial meniscal repair failure, whereas younger age and low surgeon volume increases the risk of lateral meniscal repair failure


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_9 | Pages 10 - 10
1 Jun 2021
Van Tienen T Defoort K van de Groes S Emans P Heesterbeek P Pikaart R
Full Access

Introduction. Post-meniscectomy syndrome is broadly characterised by intractable pain following the partial or total removal of a meniscus. There is a large treatment gap between the first knee pain after meniscectomy and the eligibility for a TKA. Hence, there is a strong unmet need for a solution that will relieve this post-meniscectomy pain. Goal of this first-in-man study was to evaluate the safety and performance of an anatomically shaped artificial medial meniscus prosthesis and the accompanying surgical technique. Methods. A first-in-man, prospective, multi-centre, single arm clinical investigation was intended to be performed on 18 post-medial meniscectomy syndrome patients with limited underlying cartilage damage (Kellgren Lawrence scale 0–3) in the medial compartment and having a normal lateral compartment. Eventually 5 patients received a polycarbonate urethane mediale meniscus prosthesis (Trammpolin® medial meniscus prosthesis; ATRO Medical B.V., the Netherlands) which was clicked onto two titanium screws fixated at the native horn attachments on the tibia. PROMs were collected at baseline and at 6 weeks, 3, 6, 12 and 24 months following the intervention including X-rays at 6, 12 and 24 Months. MRI scans were repeated after 12 and 24 months. Results. The surgical technique to select the appropriately sized implant and correct positioning of the fixation screws and meniscus prosthesis onto the tibia was demonstrated feasible and reproducible. The surgeries showed that in particular the positioning of the posterior screw is crucial for correct positioning of the prosthesis. Inclusion stopped after 5 patients, who reached the 6 months evaluation. The PROMs did not improve in the first 6 months after surgery. All patients reported knee joint stiffness and slight effusion in their knee at 6 months follow-up. In case of symptomatic patients an evaluation of the device position and integrity was performed by MRI. In three patients the implants were removed because of implant failure and in one patient the implant was removed because of persistent pain and extension deficit. At present one patient has the implant still in situ. The explantations of the implants demonstrated no articular cartilage damage and the fixation screws were securely anchored. Discussion. This is the first clinical study with an artificial meniscus-like prosthesis. Except one, all implants were removed due to implant breakage or discomfort of the patient. Analysis of the torn implants showed fatigue failure resulting from the lack of loadsharing between implant and cartilage: the implant was too stiff and carried all the load in the medial compartment of the knee. Furthermore, the fixation with screws seemed too rigid which restricted the motion of the posterior horn. Based on previous in vitro and animal experiments, we expected more creep of the material and more motion on the screw fixation. Conclusion. This first-in-man clinical study demonstrates that the investigated device design is not safe and did not perform as expected. Therefore, modification of the meniscus prosthesis design and fixation technique is required to allow for more motion of the meniscus prosthesis during knee joint movement


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_6 | Pages 137 - 137
1 Jul 2020
Tynedal J Heard SM Hiemstra LA Buchko GM Kerslake S
Full Access

The purpose of this study was to compare intra-operative, clinical, functional, and patient-reported outcomes following revision anterior cruciate ligament reconstruction (ACL-R) with a matched cohort of primary isolated ACL-R. A secondary purpose was to compare patient-reported outcomes within revision ACL-R based on intra-operative cartilage pathology. Between January 2010 and August 2017, 396 patients underwent revision ACL-R, and were matched to primary isolated ACL-R patients using sex, age, body mass index (BMI), and Beighton score. Intra-operative assessments including meniscal and chondral pathology, and graft diameter were recorded. Lachman and pivot shift tests were completed independently on each patient at two-years post-operative by a physiotherapist and orthopaedic surgeon. A battery of functional tests was assssed including single-leg Bosu balance, and four single-leg hop tests. The Anterior Cruciate Ligament-Quality of Life Questionnaire (ACL-QOL) was completed pre-operatively and two-years post-operatively. Descriptive statistics including means (M) and standard deviations (SD), and as appropriate paired t-tests were used to compare between-groups demographics, the degree and frequency of meniscal and chondral pathology, graft diameter, rate of post-operative ACL graft laxity, the surgical failure rate, and ACL-QOL scores. Comparative assessment of operative to non-operative limb performance on the functional tests was used to assess limb symmetry indices (LSI). Revision ACL-R patients were 52.3% male, mean age 30.7 years (SD=10.2), mean BMI 25.3 kg/m2 (SD=3.79), and mean Beighton score 3.52 (SD=2.51). In the revision group, meniscal (83%) and chondral pathology (57.5%) was significantly more frequent than in the primary group (68.2% and 32.1%) respectively, (p < 0 .05). Mean graft diameter (mm) in the revision ACL-R group for hamstring (M=7.89, SD=0.99), allograft (M=8.42, SD=0.82), and patellar or quadriceps tendon (M=9.56, SD=0.69) was larger than in the primary ACL-R group (M=7.54, SD=0.76, M=8.06, SD=0.55, M=9, SD=1) respectively. The presence of combined positive Lachman and pivot shift tests was significantly more frequent in the revision (21.5%) than primary group (4.89%), (p < 0 .05). Surgical failure rate was higher in the revision (10.3%) than primary group (5.9%). Seventy-three percent of revision patients completed functional testing. No significant LSI differences were demonstrated between the revision and primary ACL-R groups on any of the functional tests. No statistically significant differences were demonstrated in mean preoperative ACL-QOL scores between the revision (M=28.5/100, SD=13.5) and primary groups (M=28.5/100, SD=14.4). Mean two-year scores demonstrated statistically significant and minimally clinically important differences between the revision (M=61.1/100, SD=20.4) and primary groups (M=76.0/100, SD=18.9), (p < 0 .05). Mean two-year scores for revision patients with repair of the medial (M=59.4/100, SD=21.7) or lateral meniscus (M=59.4/100, SD=23.6), partial medial meniscectomy (M=59.7/100, SD=20), grade three or four osteoarthritis (M=55.9/100, SD=19.5), and medial femoral condyle osteoarthritis (M=59.1/100, SD=18) were lower compared with partial lateral meniscectomy (M=67.1/100, SD=19.1), grade one or two osteoarthritis (M=63.8/100, SD=18.9), and lateral femoral condyle osteoarthritis (M=62, SD=21). Revision ACL-R patients demonstrated a greater amount of meniscal and chondral pathology at the time of surgery. Two-years post-operative these patients demonstrated higher rates of graft laxity and lower ACL-QOL scores compared with the primary ACL-R group. Higher grade and medial sided osteoarthritis was associated with inferior ACL-QOL scores in revision ACL-R


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_9 | Pages 54 - 54
1 May 2016
Carpanen D Hillstrom H Walker R Reisse F Cheah K Mootanah R
Full Access

Introduction. Partial meniscectomy, a surgical treatment for meniscal lesions, allows athletes to return to sporting activities within two weeks. However, this increases knee joint shear stress, which is reported to cause osteoarthritis. The volumes and locations of partial meniscectomy that would result in a substantial increase in knee joint stress is not known. This information could inform surgeons when a meniscus reconstruction is required. Aim. Our aim was to use a previously validated knee finite element (FE) model to predict the effects of different volumes and locations of partial meniscectomy on cartilage shear stress. The functional point of interest was at the end of weight acceptance in walking and running, when the knee is subjected to maximum loading. Method. An FE model of the knee joint was used to simulate walking and running, two of the most common functional activities. Forces and moments, obtained from the gait cycle of a 76.4 kg male subject, were applied at the tibia. Different sizes (0%, 10%, 30%, 60%) and locations (anterior, medial and posterior) of partial meniscectomies were simulated (Figure 1). Maximum cartilage shear stress was determined for the different meniscectomies. Graphs were plotted of the cumulative tibial cartilage volume subjected to stress values above specific thresholds. Results and analysis. Maximum shear stress values for the intact knee during walking were 2.00 MPa medially and 1.71 MPa laterally. During running these magnitudes rose to 3.48 MPa medially and 4.70 MPa laterally. For a 30% anterior, central and posterior meniscectomy during walking shear stress increased by 25.9%, 44.9% and 32.5% medially, and 12.4%, 25.7% and 17.8% laterally. During running shear stress increased by 9.6%, 8.3% and 7.1%, medially and 31.6%, 37.5% and 43.6% laterally. For a 60% meniscectomy, during walking shear stress increased by 47.2% medially and 31.8%, laterally. During running shear stress increased by 10.0%, medially and 51.8%, laterally. The percentage of cartilage volume exposed to shear stress levels above a specified threshold is illustrated in Figure 2 for different volumes and locations of partial meniscectomy. Discussion and conclusions. This is first study that has estimated the volume of cartilage exposed to specific stress thresholds in walking and running as a function of the amount and location of meniscectomy. Maximum shear stress was 100% higher at the end of weight acceptance in running compared to walking. Stress was higher in the lateral compartment during running while higher in the medial compartment during walking. This is because a valgus moment acts at the knee at the end of weight acceptance in running while a varus moment acts at the joint in walking. Clinical significance. The model developed from this research has potential for applications in planning meniscal surgeries and developing rehabilitation strategies for athletes. It could inform surgeons about the safe volume and location of partial meniscectomy that can be performed before meniscus reconstruction becomes necessary. Results of this study also highlight the importance of considering the effect of post-surgical outcomes following different common functional activities


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_4 | Pages 91 - 91
1 Jan 2016
Van Der Straeten C Doyen B Dutordoir C Goedertier W Pirard S Victor J
Full Access

INTRODUCTION. Meniscal tears are very common and treated surgically by suturing or partial or total meniscectomy. After meniscectomy, the tibiofemoral contact area is decreased whih leads to higher contact stresses associated with clinical symproms and a faster progression of tibiofemoral osteoarthritis. Besides meniscus allograft transplantation, artificial implants have been developed to replace the menisci after meniscectomy. AIM. We investigated the short- and medium-term clinical results and survivorship of two artificial meniscus implants used as a treatment for post-meniscectomy pain in young to middle-aged patients: the anchored polyurethane degradable Actifit® (2007–2013) and the non-anchored polycarbonate-urethane NUSurface® meniscal implants (2011–2013). PATIENTS AND METHODS. Sixty-seven Actifit were implanted in 67 patients with a mean age of 30.5 years (12 to 50) as a lateral meniscus replacement in 24 cases and medial in 43. Forty-one NUSurface were implanted as a medial meniscus replacement in 35 patients aged 31 to 61 at surgery. Clinical scores (KOOS, Lysholm, IKDC, VAS and EQ-5D) and MRI were obtained preoperatively and at 1, 2 and 5 years (if applicable) postoperatively. Complications and reinterventions were noted and cumulative implant survivorship computed. RESULTS. Seventeen Actifit had been removed at a mean of 22 months postop for persisting pain and/or extrusion of the implant on MRI. Three were converted to a Total Knee Arthroplasty (TKA), 7 replaced by a meniscal allograft and 7 were removed. The cumulative survivorship was 63.6% at 6 years. Forty-six patients with the Actifit in situ had a significant improvement of all clinical scores compared to preoperative scores (p<0.05) and were satisfied with the result. In the NUSurface group, 19 of the 41 implanted menisci had been removed at 2 to 26 months follow-up. Reasons for failure were radial tear or rupture of the meniscus in 7 cases, dislocation with or without tear in 4, synovitis and hydrops in 2 possibly related to synovial reaction to polymer particles, medial pressure caused by a too large size in 3 and persistent pain or OA evolution in 3. In 5 patients the implant was replaced by the same type artificial meniscus, unsuccessfully in 3. Besides, complications occurred in 32 patients including inflammation, effusion and squeaking. Nevertheless the KOOS, IKDC and VAS for pain were significantly improved at 12 months postoperatively (p<0.001). DISCUSSION. Short-term clinical evaluation of artificial meniscal replacement after meniscectomy showed an initial improvement of pain and knee function. However, both in the anchored degradable polyurethane meniscal implant group as in the non-anchored polycarbonate-urethane implant group the number of short-term failures was high and associated with important morbidity. The hard, non-degradable polycarbonate-urethane meniscal implant was torn or worn in 7 cases within 2 years postop. Three patients had synovial reactions possibly related to particulate debris. In conclusion, the currently available artificial meniscal transplants have a too high short-term failure rate to be advocated for widespread clinical use


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_12 | Pages 42 - 42
1 Mar 2013
Subbu R Nandra R Patel D McArthur J Thompson P
Full Access

In August 2007 NICE issued its guidance for the treatment of patients with knee osteoarthritis (OA) with arthroscopic lavage. The recommendations stated that referral for arthroscopic lavage and debridement should not be offered as part of treatment for osteoarthritis, unless the person has osteoarthritis with a clear history of ‘mechanical locking’ (not gelling, giving way, or x-ray evidence of loose bodies). The aim of this study was to assess both the application of these guidelines over a four month period and whether this procedure had improved symptoms at first follow-up. This was a retrospective review from August-December 2011. The total number of arthroscopies performed during this period was obtained from theatre records. Further data was obtained through the hospital's electronic database. The diagnosis of OA was made through the analysis of referral and clinic letters, plain radiographs, MRI reports and operation notes. Only those patients with persisting OA symptoms were included, those with OA and recent history of injury or trauma were excluded. During this time period, 222 knee arthroscopies were performed in total, 99 were identified with persistent OA symptoms. Having identified these patients, referral letters were further analysed to identify the initial presenting symptom. Of the 99, 50 presented with pain, 28 presented with pain plus another symptom other than locking e.g. stiffness/swelling/giving-way, 21 presented with pain plus mechanical locking. According to current guidelines only these 21 patients should have been offered arthroscopic lavage as a form of treatment. In addition to these findings we identified what procedures had been carried out during arthroscopy for each symptom. Of those presenting with pain, 82% had a washout and debridement, 8% had washout, 4% had partial medial meniscectomy, 4% had lateral patellar release and 2% had partial lateral meniscectomy. Those with pain plus other symptoms not including locking, 82% had washout and debridement, 11% had partial medial meniscectomy, and 7% had a washout. Of those presenting with pain plus mechanical locking, 81% had washout and debridement and 19% had partial medial meniscectomy. Following the procedure, we analysed the outcome of symptoms at first-follow up. The mean follow-up time was 8 weeks. Of those presenting with just pain, 44% showed improvement, 52% had no change/on-going symptoms, 2% were unknown. Of those with pain plus other symptoms other than locking, 57% showed improvement, 35% had no change/on-going symptoms, 8% unknown. Of those with pain plus mechanical locking, 80% showed improvement, 10% had no change/on-going symptoms, 10% unknown. The results of this study support the current evidence that unless there are clear mechanical symptoms of locking, the use of arthroscopy in arthritic knee joints should be judicious and the reasons should be clearly documented


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_IV | Pages 135 - 135
1 Mar 2012
McDermott I Lie D Edwards A Bull A Amis A
Full Access

This paper reports a series of comparative tests in-vitro that examined how lateral meniscectomy and meniscal allografting affected tibio-femoral joint contact pressures. 8 Cadaver knees (age range 81 – 98 years) were loaded in axial compression in an Instron materials testing machine up to 700N for 10 seconds and pressure maps obtained from the lateral compartment using Fuji Prescale film inserted below the meniscus. This was repeated after meniscectomy, then after meniscal allografting with fixation by a bone plug for the insertional ligaments, plus peripheral sutures. Finally, the pressure when the allograft was secured by peripheral sutures alone was measured. Meniscectomy caused a significant increase in peak contact pressures (p=0.0002). Both of the reconstructive methods reduced the peak contact pressures significantly below that of the meniscectomised knee (p=0.0029 with bone block; p=0.0199 with sutures alone). A significant difference was not found between the peak contact pressures after the reconstructions and that of the intact knee (p=0.1721 with bone block; p=0.0910 with sutures alone). The peak pressures increased slightly when the allografts were converted from bone block to suture-only fixation (p=0.0349). The principal finding was that both of the meniscal allograft insertion techniques reduced the peak contact pressure significantly below that of the meniscectomised knee, so that it did not then differ significantly from the peak contact pressure in the intact knee. When the two fixation methods were compared, the loss of the bone plug attachment caused a small increase in peak pressure. This study suggests that meniscal allografting should have a chondroprotective effect and that there is a small advantage from adding bony fixation to suture fixation


Bone & Joint Open
Vol. 4, Issue 9 | Pages 704 - 712
14 Sep 2023
Mercier MR Koucheki R Lex JR Khoshbin A Park SS Daniels TR Halai MM

Aims

This study aimed to investigate the risk of postoperative complications in COVID-19-positive patients undergoing common orthopaedic procedures.

Methods

Using the National Surgical Quality Improvement Programme (NSQIP) database, patients who underwent common orthopaedic surgery procedures from 1 January to 31 December 2021 were extracted. Patient preoperative COVID-19 status, demographics, comorbidities, type of surgery, and postoperative complications were analyzed. Propensity score matching was conducted between COVID-19-positive and -negative patients. Multivariable regression was then performed to identify both patient and provider risk factors independently associated with the occurrence of 30-day postoperative adverse events.


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_6 | Pages 83 - 83
1 Jul 2020
Yao H Xu J Qin L Zheng N Wang J Ho KW
Full Access

Previous study reported that intra-articular injection of MgSO4 could alleviate pain related behaviors in a collagenase induced OA model in rats. It provided us a good description on the potential of Mg2+ in OA treatment. However, the specific efficiency of Mg2+ on OA needs to be further explored and confirmed. The underlying mechanisms should be elucidated as well. Increasing attention has been paid on existence of synovial fluid MSCs (SF-MSCs) (not culture expanded) which may participate in endogenous reparative capabilities of the joint. On the other hand, previous studies demonstrated that Mg2+ not only promoted the expression of integrins but also enhanced the strength of fibronectin-integrin bonds that indicated the promotive effect of Mg2+ on cell adhesion, moreover, Mg2+ was proved could enhance chondrogenic differentiation of synovial membrane derived MSCs by modulating integrins. Based on these evidence, we hypothesize herein intra-articular injection of Mg2+ can attenuate cartilage degeneration in OA rat through modulating the biological behavior of SF-MSCs. Human and rat SF-MSCs were collected after obtaining Experimental Ethics approval. The biological behaviors of both human and rat SF-MSCs including multiple differentiation, adhesion, colony forming, proliferation, etc. were determined in vitro in presence or absence of Mg2+ (10 mmol/L). Male SD rats (body weight: 450–500 g) were used to establish anterior cruciate ligament transection and partial medial meniscectomy (ACLT+PMM) OA models. The rats received ACLT+PMM were randomly divided into saline (control) group and MgCl2 (0.5 mol/L) group (n=6 per group). Intra-articular injection was performed on week 4 post-operation, twice per week for two weeks. Knee samples were harvested on week 2, 4, 8, 12 and 16 after injection for histological analysis for assessing the progression of OA. On week 2 and 4 after injection, the rat SF-MSCs were also isolated before the rats were sacrificed for assessing the abilities of chondrogenic differentiation, colony forming and adhesion in vitro. Statistical analysis was done using Graphpad Prism 6.01. Unpaired t test was used to compare the difference between groups. Significant difference was determined at P < 0 .05. The adhesion and chondrogenic differentiation ability of both human and rat SF-MSCs were significantly enhanced by Mg2+ (10 mmol/L) supplementation in vitro. However, no significant effects of Mg2+ (10 mmol/L) on the osteogenic and adipogenic differentiation as well as the colony forming and proliferation. In the animal study, histological analysis by Saffranin O and Toluidine Blue indicated the cartilage degeneration was significantly alleviated by intra-articular injection of Mg2+, in addition, the expression of Col2 in cartilage was also increased in MgCl2 group with respect to control group indicated by immunohistochemistry. Moreover, the OARSI scoring was decreased in MgCl2 group as well. Histological analysis and RT-qPCR indicated that the chondrogenic differentiation of SF-MSCs isolated from Mg2+ treated rats were significantly enhanced compare to control group. In the current study, we have provided direct evidence supporting that Mg2+ attenuated the progression of OA. Except for the effect of Mg2+ on preventing cartilage degeneration had been demonstrated in this study, for the first time, we demonstrated the promoting effect of Mg2+ on adhesion and chondrogenic differentiation of endogenous SF-MSCs within knee joint that may favorite cartilage repair. We have confirmed that the anti-osteoarthritic effect of Mg2+ involves the multiple actions which refer to prevent cartilage degeneration plus enhance the adhesion and chondrogenic differentiation of SF-MSCs in knee joint to attenuate the progression of OA. These multiple actions of Mg2+ may be more advantage than traditional products. Besides, this simple, widely available and inexpensive administration of Mg2+ has the potential on reducing the massive heath economic burden of OA. However, the current data just provided a very basic concept, the exact functions and underlying mechanisms of Mg2+ on attenuating OA progression still need to be further explored both in vitro and in vivo. Formula of Mg2+ containing solution also need to be optimized, for example, a sustained and controlled release delivery system need to be developed for improving the long-term efficacy


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XLI | Pages 125 - 125
1 Sep 2012
Jin A Lynch J Scholes C Li Q Coolican M Parker D
Full Access

An ACL reconstruction is designed to restore the normal knee function and prevent the onset and progression of degenerative changes such as osteoarthritis. However, contemporary literature provides limited consensus on whether knee degeneration can be attenuated by the reconstruction procedure. The aim of this pilot study was to identify the presence of early osteoarthritis after ACL reconstruction using MRI analysis. 19 patients who had undergone an ACL reconstruction (9 isolated ACL rupture, 8 ACL rupture and meniscectomy, 2 ACL rupture and meniscal repair) volunteered for this study. MRI's were collected preoperatively and postoperatively for analysis with a mean follow up of 23 months. The Boston-Leeds Osteoarthritis Knee Score (BLOKS) was used for the analysis of the articular cartilage by a consultant orthopaedic surgeon. Scores ranged from 0–3, with 0 being total coverage and thickness of the cartilage and 3 being no coverage. Qualitative analysis was then conducted on each patient to determine if the articular cartilage improved, degenerated, or did not change between preoperative and follow-up scans. All patients with isolated ACL rupture were found to either have no change or improved articular cartilage scores in their follow up scans compared preoperatively. In contrast, patients with a meniscal repair displayed worse cartilage scores postoperatively. Lastly, of the patients who had an associated meniscectomy, 6 had worse follow-up results, with the remaining patients showing no change or improved cartilage scores. The present results indicate that patients with an isolated ACL rupture have a reduced risk of developing OA compared to those with associated meniscal injuries. This has implications for analysing the outcome of current ACL reconstruction techniques and in predicting the likelihood of patients developing OA after ACL reconstruction. Future work will involve confirming this pattern in a larger patient sample, as well as exploring additional factors such as time to surgery delay and rehabilitation strategy


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XL | Pages 125 - 125
1 Sep 2012
Elsner J Condello V Zorzi C Verdonk P Arbel R Hershman E Guilak F Shterling A Linder-Ganz E Nocco E
Full Access

Statement of Purpose. Meniscal tears are common knee injuries that subsequently lead to degenerative arthritis, attributed to changes in stress distribution in the knee. In such cases there is need to protect the articular cartilage by repairing or replacing the menisci. While traditionally, meniscal replacement involves implantation of allografts, problems related to availability, size matching, cost and risk of disease transmission limit their use. Another optional treatment is that of biodegradable scaffolds which are based principally on tissue engineering concepts. The variability in body response to biodegradable implants and the quality of the tissue formed still pose a problem in this respect, under intense knee loading conditions. Moreover, biological solutions are mostly limited to younger patients <40 years old. Therefore, the goal of this study was, to develop a synthetic meniscal implant which can replace the injured meniscus, restore its function, and relieve pain. Methods. A composite, non-fixed self-centering discoid-shaped meniscus implant (NUsurafce®, AIC, Memphis, TN), composed of polycarbonate-urethane (PCU) and reinforced circumferentially with UHMWPE fibers is proposed (Fig. 1). The implant geometry was based on an extensive MRI study of over 100 knee scans [1]. The proposed structure aims to mimic the circumferential collagen reinforcement of the natural meniscus. Biomechanical evaluation of the implant was focused on in-vitro measurements of contact pressure under the implant in cadaver knees and computational finite element (FE) analyses [2,3]. Pressure distribution on the tibial plateau (under the meniscus implant) was measured by pressure sensitive films (Tekscan, MA) and quantified with respect to the natural meniscus. FE analyses were used to evaluate internal stress and strains, and to support the selection of optimal implant configuration. The last pre-clinical step was a large-animal (sheep) study in which the cartilage condition was evaluated microscopically over six months [4]. Results. Contact pressure distributions on the tibia, were in good agreement with those measured under the natural meniscus (Fig. 2). Specifically, peak and average pressures developed under the implant were found to similar to those of the natural meniscus. The contact area measured under the implant (658±135mm. 2. ) was also restored when compared to the natural meniscus (642±96mm. 2. ). FE models confirmed that internal strains/stresses within the device components remained within the materials' allowed limits. The evaluation of an implant adapted to sheep showed no signs of wear or degradation of the materials. Histology showed relatively mild cartilage degeneration that was dominated by loss of proteoglycan content and cartilage structure. First clinical results for the implant, with up to 2 years follow-up, demonstrate encouraging prospects for this concept in terms of pain relief. Conclusions. In the current study, we presented the development of a novel PCU meniscal implant for the medial compartment of the knee, along with an overview of essential tests. It was found that (a) the implant is able to reduce the overall cartilage load associated with meniscectomy by effectively distributing joint loads, and (b) the implant completely prevents contact between opposing cartilage surfaces. The results of implantation in sheep can be considered favourable in arresting joint degeneration, and first implantations have shown that arthroscopic implantation of the device is short and uncomplicated. Results. Contact pressure distributions on the tibia, were in good agreement with those measured under the natural meniscus (Fig. 2). Specifically, peak and average pressures developed under the implant were found to similar to those of the natural meniscus. The contact area measured under the implant (658±135mm. 2. ) was also restored when compared to the natural meniscus (642±96mm. 2. ). FE models confirmed that internal strains/stresses within the device components remained within the materials' allowed limits. The evaluation of an implant adapted to sheep showed no signs of wear or degradation of the materials. Histology showed relatively mild cartilage degeneration that was dominated by loss of proteoglycan content and cartilage structure. First clinical results for the implant, with up to 2 years follow-up, demonstrate encouraging prospects for this concept in terms of pain relief. Conclusions. In the current study, we presented the development of a novel PCU meniscal implant for the medial compartment of the knee, along with an overview of essential tests. It was found that (a) the implant is able to reduce the overall cartilage load associated with meniscectomy by effectively distributing joint loads, and (b) the implant completely prevents contact between opposing cartilage surfaces. The results of implantation in sheep can be considered favourable in arresting joint degeneration, and first implantations have shown that arthroscopic implantation of the device is short and uncomplicated


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_21 | Pages 63 - 63
1 Dec 2016
Mutch J Cracchiolo A Keating P Lemos S
Full Access

The absence of menisci in the knee leads to early degenerative changes. Complete radial tears of the meniscus are equivalent to total meniscectomy and repair should be performed if possible. The purpose of this study was to biomechanically compare the cross suture, hashtag and crosstag meniscal repairs using all-inside implants for radial tears. Radial tears were created at the mid-body of 36 fresh-frozen lateral human menisci and then repaired, in randomiSed order, with Fast-Fix™ 360s (Smith & Nephew, Andover, MA) using the cross suture, hashtag and crosstag techniques. The repaired menisci were tested using an Instron Electropuls E10000 (Instron, Norwood, MA). The tests consisted of cyclic loading from 5 to 30N at 1Hz for 500 cycles, then a load to failure test. Displacement following cyclic loading, load at 3mm of displacement, load to failure, and stiffness were recorded. Any differences between repairs were assessed using Kruskal-Wallis and Mann Whitney tests (p<0.05). Cross suture repairs displaced more following cyclic loading and resisted less load to failure than both the hashtag and crosstag repairs. However, these differences were not statistically significant. The average displacement following cyclic loading of cross suture, hashtag, and crosstag repairs was 4.34 mm (±2.02 mm), 3.46 mm (±2.12 mm), and 3.24 mm (±1.52 mm) respectively (p=0.33). Maximal load to failure was 64.83 N (±17.41 N), 74.52 N (±9.03 N), and 74.98N (±10.50N), respectively (p=0.419). All-inside cross suture, hashtag and crosstag repairs all displaced >3mm with cyclic loading, which is the threshold for meniscal insufficiency. This contrasts previous studies using inside-out sutures, where crosstag and hashtag repairs resisted cyclic loading (< 3mm). Inside-out suturing for radial tears of the lateral meniscus currently remains the gold standard


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXXIX | Pages 246 - 246
1 Sep 2012
Paringe V Kate S Mark B
Full Access

Introduction. As modern day lifestyle is becoming more active so is the incidence of meniscal injuries on rise. An injury to the meniscus is a common orthopedic problem with the incidence of meniscal injury resulting in meniscectomy of 61 per 100,000 populations per year. The common practice in diagnosis of the meniscal injury involves clinical examination followed by radiological or arthroscopic confirmation. The clinical tests commonly performed are joint line tenderness (JLT), McMurray's Test (Non-weight bearing test) and Childress Test (Weight Bearing Test). Aim. In our study, we performed the comparative analysis of the validity parameters for components of clinical examination in form of Joint line tenderness, McMurray's test and Childress Test. Methodology. A retrospective analysis was performed on the database established using Orchard Sports Injury Classification System-8. Codes KC2 and KC3 (Meniscal injuries) were identified for single examiner for duration from 2004–2007. Out of 88 patients considered for the study, 62 patients were stratified in whom only clinical examination was performed followed by arthroscopic evaluation. The validity parameters considered were accuracy, specificity, sensitivity, positive predictive value (PPV) and negative predictive value (NPV). Results. Joint line tenderness had accuracy of 85.47%, sensitivity of 89.09%, and specificity of 57.14%, PPV of 94.23% and NPV of 40%. McMurray's test yielded a accuracy of 88.7%, sensitivity of 89.65%, specificity of 75%, PPV of 98.11%, NPV of 33.33% while Childress test accurately predicted meniscal injury 87.09% and was sensitive for 94.73% with specificity of 40%, PPV of 94.73% and NPV of 40%. Conclusion. We can summarise that though the JLT, McMurray's Test and Childress Test provide a variable yet effective diagnostic value, all through can provide a composite diagnostic yield improving the outcome of clinical examination in meniscal injuries


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XLI | Pages 120 - 120
1 Sep 2012
Roe J Sri-Ram K Salmon L Pinczewski L
Full Access

To determine the relationship between advancing months from ACL rupture and the incidence of intra-articular meniscal and chondral damage. From a prospectively collected database 5086 patients undergoing primary ACL reconstruction, using hamstring graft, carried out between January 2000 and August 2010 were identified. Data collected included the interval between injury and surgery, type and location of meniscal tears (requiring meniscectomy) and location and severity of chondral damage (ICRS grading system). Patients were grouped according to time interval and age. The median time from ACL injury to ACL reconstruction was 3 months (range 0.25 to 480). Overall, an increasing incidence of medial meniscal injury and chondral damage occurred with advancing chronicity of ACL deficiency. The incidence of medial meniscal injury requiring meniscectomy increased from 18% of patients undergoing ACL reconstruction within 4 months of injury to 59% of patients if ACL reconstruction was delayed more than 12 months (p<0.001). The incidence of lateral meniscal tears did not increase significantly over time. The increasing incidence of secondary pathology with advancing chronicity was more pronounced in the younger age groups. The risk of a medial meniscal tear requiring resection was significantly less if surgery was performed before 5 months in the <17 years group (Odds Ratio 2) and 17–30 years group (OR 1.9), but less so in the 31–50 years group (OR 1.5) and >50 years group (OR 1.5). Advancing age was associated with a greater incidence of chondral damage and medial meniscal injury, but not lateral meniscal injury. Males had a greater incidence of lateral meniscal tears (34% vs. 20%), but not medial (28% vs. 25%) or chondral damage (35% vs. 36%), compared to females. The incidence of chondral damage and medial meniscal tears increases with advancing time after ACL injury. Particularly in younger patients, ACL reconstruction should be performed within 4 months of ACL injury in order to minimise the risk of irreversible damage to meniscal and chondral structures