Advertisement for orthosearch.org.uk
Results 1 - 12 of 12
Results per page:
Bone & Joint Research
Vol. 3, Issue 10 | Pages 297 - 304
1 Oct 2014
Fitch DA Sedacki K Yang Y

Objectives. This systematic review and meta-analysis was conducted to determine the mid- to long-term clinical outcomes for a medial-pivot total knee replacement (TKR) system. The objectives were to synthesise available survivorship, Knee Society Scores (KSS), and reasons for revision for this system. Methods. A systematic search was conducted of two online databases to identify sources of survivorship, KSS, and reasons for revision. Survivorship results were compared with values in the National Joint Registry of England, Wales, and Northern Ireland (NJR). Results. A total of eight studies that included data for 1146 TKRs performed in six countries satisfied the inclusion/exclusion criteria. Pooled component survivorship estimates were 99.2% (95% CI, 97.7 to 99.7) and 97.6% (95% CI, 95.8 to 98.6) at five and eight years, respectively. Survivorship was similar or better when compared with rates reported for all cemented TKRs combined in the NJR and was significantly better than some insert types at mid-term intervals. The weighted mean post-operative KSS was 87.9 (73.2 to 94.2), in the excellent range. Similar cumulative revision rates and KSS were reported at centres in the United States, Europe, and Asia. Conclusions. The subject system was associated with survivorship and KSS similar or better than that reported for other TKR systems. Cite this article: Bone Joint Res 2014;3:297–304


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_9 | Pages 93 - 93
1 May 2016
DeBoer D Blaha J Barnes C Fitch D Obert R Carroll M
Full Access

Introduction. Quadriceps performance following total knee arthroplasty (TKA) is a critical factor in patient satisfaction that can be significantly affected by implant design (Greene, 2008). The objective of this study was to compare quadriceps efficiency (QE) following TKA with a medial-pivot system (EVOLUTION®, MicroPort Orthopedics Inc., Arlington, TN, USA) to non-implanted control measurements. Methods. Five cadaveric leg specimens with no prior surgeries, deformities, or disease were obtained. Each was placed in a custom closed chain device and loaded to simulate a heel-up squat from full-extension to deep flexion (approximately 115°) and back to full extension. Quadriceps force (FQ) and ground reaction force (FZ) were measured, and the ratio of the two was calculated as the quadriceps load factor (QLF). QFLs are inversely related to QE, with higher QFLs representing reduced efficiency. Each specimen was then implanted with a medial-pivot implant by a board certified orthopedic surgeon and force measurements were repeated. Mean pre- (represents control values) and post-implantation QFLs were compared to determine any differences in QE throughout the range of motion. Results. Mean QFLs were not statistically different for pre- and post-implantation measurements throughout loading (Figure 1). QE was increased in the post-implantation measurements compared to pre-implantation between approximately 80° and 115° flexion and reduced between 5° and 80°. The mean peak post-implantation QFL was 5% less than that measured pre-implantation. Discussion. Quadriceps muscles were least efficient during peak flexion (80°–115°) when FQ was highest during both pre- and post-implantation measurements. The similar QE seen between the pre- and post-implantation measurements for most of the range of motion could be a result of the system design, which seeks to mimic the kinematics of the normal knee (Schmidt, 2003). The observed nearly-linear change in the FQ through 75° is likely due to the combination of the medial spherical radius and the conformity of the medial tibial insert socket that provides a constant moment arm on which the extensor mechanism can act. The primary driver of decreasing efficiency of the extensor mechanism is the increasing moment arm of the load with increasing flexion. The second increase in FQ in deep flexion (>110°) for the implanted measurements is likely due to the smaller closing radius on the femoral component in this range. These preliminary data have the potential to be significant clinically in that decreased QE may result in increased quadriceps forces manifesting in anterior knee pain or patient fatigue. Additionally, increased QE may play a role in rehabilitation and return to activities of daily living. The current results show the medial-pivot system may increase QE during peak flexion and does not significantly reduce QE during midflexion when compared to control. In-vivo testing is needed to confirm if these results translate to clinical practice


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_9 | Pages 120 - 120
1 May 2016
Parker A Fitch D Nambu S Timmerman I
Full Access

Introduction. Total knee replacement (TKR) implant designs and materials have been shown to have a significant impact on tibial insert wear. A medial-pivot (MP) design theoretically should generate less wear due to a large contact area in the medial compartment and lower contact stresses. Synovial fluid aspiration studies have confirmed that a first generation MP TKR system (ADVANCE®, MicroPort Orthopedics Inc., Arlington, TN, USA) generates less wear debris than is seen with other implant designs articulating against conventional polyethylene (CP). Objectives. The objective of this study was to evaluate the in vitro wear rate of a second generation MP TKR system (EVOLUTION® Cruciate-Sacrificing, MicroPort Orthopedics Inc., Arlington, TN, USA) using CP tibial inserts and compare to previously published values for other TKR designs with CP and first or second generation crosslinked polyethylene (XLPE) tibial inserts. Methods. In vitro wear was assessed for five MP CP tibial inserts, each loaded for 5 megacycles (Mc) of simulated gait in accordance with ISO 14243–3. Insert cleaning and wear measurements were performed every 0.5 Mc in accordance with ISO 14243–2. Manufacturer websites and the MEDLINE database were searched for previously published in vitro wear rates for other TKR designs used in combination with CP and first or second generation XLPE inserts. Second generation XLPE inserts are those with additives or additional manufacturing, such as sequentially annealed and irradiated XLPE (X3®, Stryker, Mahwah, NJ, USA) and vitamin E infused polyethylene (E1®, Biomet, Warsaw, IN, USA). All TKR designs utilized cobalt-chrome (CoCr) femoral components, except Legion-Verilast that included Oxinium™ femoral components (Smith & Nephew, Memphis, TN, USA). Results. The mean wear rate for the MP system (2.0+0.2 mg/Mc) was less than half the wear rates reported for other TKR designs using CP inserts (Figure 1). The wear was also reduced or similar to those reported for all but three designs used in combination with XLPE inserts (Figure 2). Interestingly, wear rates for the MP system were approximately one-third of those reported for E1 and X3 used in combination with the Scorpio and Triathlon CR TKR systems (Stryker, Mahwah, NJ, USA). The main limitation to the current study is the use of literature comparators. While the comparison studies were all conducted using similar methods on knee wear simulator machines, there were some experimental differences that could potentially impact wear rates (e.g. diluted vs. non-diluted serum, gait patterns, types of testing machines). Conclusions. In vitro wear for a second generation MP TKR system was similar or lower than what has been previously reported for other TKR systems used with CP or XLPE tibial inserts. These results suggest that implant design may play a larger role in TKR wear debris generation than the material used for the tibial insert


Orthopaedic Proceedings
Vol. 88-B, Issue SUPP_I | Pages 85 - 86
1 Mar 2006
Macheras G Baltas D Kostakos A Dallas D Kateros K
Full Access

One hundred and twenty-nine patients who had had 153 consecutive primary total knee replacements (twenty-four bilateral procedures) between February 1988 and February 1990, with insertion of medial pivot total knee system with cementless femoral and cementless tibial component without replacement of the patella, were enrolled in a prospective study. The average age of the patients at the time of surgery was 67.4 years, the average weight was 78 kg, and the most common diagnosis was osteoarthritis (prevalence, 92.9%). Twenty-six knees had a valgus deformity, ninrty-nine had a varus deformity, and twenty-eight had a normal alignment of 5 to 10 degrees of valgus Six patients had a previous high tibial osteotomy, twenty-one arthroscopic debridment and thirty-two total knee athroplasty at the other knee.

One hundred and ten patients (123 knees) were followed for an adequate interval (mean, 5.1 years; range, 3.8 to 6.8 years). Thirteen patients (fifteen knees) died, and twelve patients (fifteen knees) were lost to follow-up. The mean age of the patients at the time of the index arthroplasty was seventy years (range, twenty-nine to eighty-five years). The patients were evaluated clinically and radiographically, according to the scoring system of the Knee Society, and the results on a self-administered questionnaire were used to evaluate pain, function, satisfaction, and patellofemoral symptoms. A Kaplan-Meier survivorship analysis was performed with a revision operation as the end point. Failure was defined as aseptic loosening as evidenced by progressive radiolucent lines and/or revision due to aseptic loosening or collapse.

The mean functional and clinical scores, according to the system of the Knee Society, were 85 and 93 points, respectively, at the most recent follow-up examination. The result was excellent for 103 knees, good for thirteen, fair for three, and poor for six. One revision operation was necessary because of infection. The over-all rate of patellofemoral symptoms was 6 per cent (seven knees). Non-progressive radiolucent lines were present at the cement-bone interface in 39 per cent (thirty-nine) of the ninety-nine knees that had complete radiographic follow-up. No prosthesis had loosened by the time of the most recent follow-up examination. The rate of survival of the implant was 97 per cent at six years, and the standard error of the mean was 1.6 per cent.

In the present series, total knee arthroplasties with the medial pivot modular knee system resulted in excellent relief of pain, an excellent range of motion, and restoration of function. They were also associated with a low prevalence of patellofemoral problems.


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_10 | Pages 96 - 96
1 Jun 2018
Nam D
Full Access

Prior implant designs have relied on a four-bar link theory and featured J-curve femoral components intended to recreate femoral rollback of the native knee, but this design could lead to anterior femoral sliding or paradoxical motion. Recent kinematic analyses of the native human knee have shown the medial compartment to be more stable to anteroposterior translation than the lateral, resulting in a “medial pivot” motion as the knee flexes. “Medial pivot” designs in total knee arthroplasty were introduced in the 1990s to attempt to re-create this motion. They consist of an asymmetric tibial insert with a highly congruent medial compartment and less conforming lateral compartment. The femoral component has a single radius of curvature and a high degree of conformity. In vivo fluoroscopic studies have shown medial pivot designs to be successful in achieving its intended motion, while other cruciate-retaining designs had a higher incidence of paradoxical anterior translation and lateral condylar lift-off. Furthermore, numerous investigations have shown medial pivot designs to have excellent outcomes and survivorship at up to 10 years post-operatively. However, the contention in this debate that medial pivot designs avoid the need for ligament balancing is incorrect. Appropriate ligament balancing remains a crucial aspect of any successful total knee arthroplasty and is no less important based on the implant design utilised. In the Methods section of all prior reports using a medial pivot design, the authors have noted that appropriate ligament balancing was obtained both in flexion and extension consistent with the recommended technique with other primary TKA implant designs. From a kinematic standpoint, this makes absolute sense. If a patient has a valgus imbalance with loose medial structures, then as the knee is brought into flexion the femur will not maintain congruency and contact with the conforming tibial surface – thus the medial pivot motion will be lost. Thus, balancing remains critical. Lastly, although not the focal point of this debate, whether re-creation of a medial pivot motion in total knee arthroplasty actually improves patient outcomes remains an area of debate. A recent investigation by Warth and Meneghini, et al. demonstrated that re-creation of a medial-pivot pattern intra-operatively did not correlate with patient-reported outcomes at 1-year post-operatively. Thus, although the concept of a medial pivot design has merit, whether this will consistently improve outcomes and patient satisfaction remains to be seen


The Bone & Joint Journal
Vol. 98-B, Issue 8 | Pages 1050 - 1055
1 Aug 2016
Karachalios T Varitimidis S Bargiotas K Hantes M Roidis N Malizos KN

Aims. The Advance Medial-Pivot total knee arthroplasty (TKA) was designed to reflect contemporary data regarding the kinematics of the knee. We wished to examine the long-term results obtained with this prosthesis by extending a previous evaluation. Patients and Methods. We retrospectively evaluated prospectively collected data from 225 consecutive patients (41 men and 184 women; mean age at surgery 71 years, 52 to 84) who underwent 284 TKAs with a mean follow-up of 13.4 years (11 to 15). Implant failure, complication rate, clinical (both subjective and objective) and radiological outcome were assessed. Pre- and post-operative clinical and radiographic data were available at regular intervals for all patients. A total of ten patients (4.4%; ten TKAs) were lost to follow-up. Results. Survival analysis at 15 years showed a cumulative success rate of 97.3% (95% confidence interval (CI) 96.7 to 97.9) for revision for any reason, of 96.4% (95% CI 95.2 to 97.6) for all operations, and 98.8% (95% CI 98.2 to 99.4) for aseptic loosening as an end point. Three TKAs (1.06%) were revised due to aseptic loosening, two (0.7%) due to infection, one (0.35%) due to instability and one (0.35%) due to a traumatic dislocation. All patients showed a statistically significant improvement on the Knee Society Score (p = 0.001), Western Ontario and McMaster University Osteoarthritis Index (p = 0.001), Short Form-12 (p = 0.01), and Oxford Knee Score (p = 0.01). A total of 207 patients (92%) were able to perform age appropriate activities with a mean flexion of the knee of 117° (85° to 135°) at final follow-up. Conclusion. This study demonstrates satisfactory functional and radiographic long-term results for this implant. Cite this article: Bone Joint J 2016;98-B:1050–5


The Bone & Joint Journal
Vol. 106-B, Issue 11 | Pages 1231 - 1239
1 Nov 2024
Tzanetis P Fluit R de Souza K Robertson S Koopman B Verdonschot N

Aims

The surgical target for optimal implant positioning in robotic-assisted total knee arthroplasty remains the subject of ongoing discussion. One of the proposed targets is to recreate the knee’s functional behaviour as per its pre-diseased state. The aim of this study was to optimize implant positioning, starting from mechanical alignment (MA), toward restoring the pre-diseased status, including ligament strain and kinematic patterns, in a patient population.

Methods

We used an active appearance model-based approach to segment the preoperative CT of 21 osteoarthritic patients, which identified the osteophyte-free surfaces and estimated cartilage from the segmented bones; these geometries were used to construct patient-specific musculoskeletal models of the pre-diseased knee. Subsequently, implantations were simulated using the MA method, and a previously developed optimization technique was employed to find the optimal implant position that minimized the root mean square deviation between pre-diseased and postoperative ligament strains and kinematics.


Bone & Joint Open
Vol. 2, Issue 9 | Pages 737 - 744
1 Sep 2021
Øhrn F Lian ØB Tsukanaka M Röhrl SM

Aims

Medial pivot (MP) total knee arthroplasties (TKAs) were designed to mimic native knee kinematics with their deep medial congruent fitting of the tibia to the femur almost like a ball-on-socket, and a flat lateral part. GMK Sphere is a novel MP implant. Our primary aim was to study the migration pattern of the tibial tray of this TKA.

Methods

A total of 31 patients were recruited to this single-group radiostereometric analysis (RSA) study and received a medial pivot GMK Sphere TKA. The distributions of male patients versus female patients and right versus left knees were 21:10 and 17:14, respectively. Mean BMI was 29 kg/m2 (95% confidence interval (CI) 27 to 30) and mean age at surgery was 63 years (95% CI 61 to 66). Maximum total point motions (MTPMs), medial, proximal, and anterior translations and transversal, internal, and varus rotations were calculated at three, 12, and 24 months. Patient-reported outcome measure data were also retrieved.


The Bone & Joint Journal
Vol. 103-B, Issue 10 | Pages 1555 - 1560
4 Oct 2021
Phillips JRA Tucker K

Aims

Knee arthroplasty surgery is a highly effective treatment for arthritis and disorders of the knee. There are a wide variety of implant brands and types of knee arthroplasty available to surgeons. As a result of a number of highly publicized failures, arthroplasty surgery is highly regulated in the UK and many other countries through national registries, introduced to monitor implant performance, surgeons, and hospitals. With time, the options available within many brand portfolios have grown, with alternative tibial or femoral components, tibial insert materials, or shapes and patella resurfacings. In this study we have investigated the effect of the expansion of implant brand portfolios and where there may be a lack of transparency around a brand name. We also aimed to establish the potential numbers of compatible implant construct combinations.

Methods

Hypothetical implant brand portfolios were proposed, and the number of compatible implant construct combinations was calculated.


The Bone & Joint Journal
Vol. 101-B, Issue 7_Supple_C | Pages 55 - 60
1 Jul 2019
Laende EK Richardson CG Dunbar MJ

Aims

Early implant migration measured with radiostereometric analysis (RSA) has been proposed as a useful predictor of long-term fixation of tibial components in total knee arthroplasty. Evaluation of actual long-term fixation is of interest for cemented components, as well as for cementless fixation, which may offer long-term advantages once osseointegration has occurred. The objective of this study was to compare the long-term migration with one- and two-year migration to evaluate the predictive ability of short-term migration data and to compare migration and inducible displacement between cemented and cementless (porous metal monoblock) components at least ten years postoperatively.

Patients and Methods

Patients who had participated in RSA migration studies with two-year follow-up were recruited to return for a long-term follow-up, at least ten years from surgery. Two cemented tibial designs from two manufacturers and one porous metal monoblock cementless tibial design were studied. At the long-term follow-up, patients had supine RSA examinations to determine migration and loaded examinations (single leg stance) to determine inducible displacement. In total, 79 patients (54 female) returned, with mean time since surgery of 12 years (10 to 14). There were 58 cemented and 21 cementless tibial components.


The Bone & Joint Journal
Vol. 100-B, Issue 12 | Pages 1585 - 1591
1 Dec 2018
Kaneko T Kono N Mochizuki Y Hada M Sunakawa T Ikegami H Musha Y

Aims

Patellofemoral problems are a common complication of total knee arthroplasty. A high compressive force across the patellofemoral joint may affect patient-reported outcome. However, the relationship between patient-reported outcome and the intraoperative patellofemoral contact force has not been investigated. The purpose of this study was to determine whether or not a high intraoperative patellofemoral compressive force affects patient-reported outcome.

Patients and Methods

This prospective study included 42 patients (42 knees) with varus-type osteoarthritis who underwent a bi-cruciate stabilized total knee arthroplasty and in whom the planned alignment was confirmed on 3D CT. Of the 42 patients, 36 were women and six were men. Their mean age was 72.3 years (61 to 87) and their mean body mass index (BMI) was 24.4 kg/m2 (18.2 to 34.3). After implantation of the femoral and tibial components, the compressive force across the patellofemoral joint was measured at 10°, 30°, 60°, 90°, 120°, and 140° of flexion using a load cell (Kyowa Electronic Instruments Co., Ltd., Tokyo, Japan) manufactured in the same shape as the patellar implant. Multiple regression analyses were conducted to investigate the relationship between intraoperative patellofemoral compressive force and patient-reported outcome two years after implantation.


Bone & Joint 360
Vol. 7, Issue 5 | Pages 2 - 7
1 Oct 2018
Palan J Bloch BV Shannak O James P