Advertisement for orthosearch.org.uk
Results 1 - 20 of 95
Results per page:
Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_6 | Pages 50 - 50
1 Apr 2018
Ramkumar P Navarro S Haeberle H
Full Access

Objectives. The purpose of this observational study was to investigate and analyze the nature of the shared content of lower extremity total joint arthroplasty (TJA) patients on Instagram. Specifically, we evaluated: 1) perspective and timing of the social media posts (pre-, peri-, or post-operative); 2) tone of the post (positive or negative); 3) focus of the post (including activities of daily living (ADLs), rehabilitation, return-to-work (RTW)); and 4) compare these findings between hip and knee arthroplasties. Methods. A search of the public Instagram domain was performed over a 6 month period. Total hip and knee arthroplasty were selected for the analysis using the following terms: “#totalhipreplacement,” “#totalkneereplacement,” and associated terms. A total of 1,287 individual public posts of human subjects were shared during the period. A categorical scoring system was manually applied for media format (photo or video), time (pre-, peri- or post-operative) period, tone (positive or negative), RTW reference, ADLs reference, rehabilitation reference, surgical site reference, radiograph image, satisfaction and dissatisfaction references. The post perspective was recorded. Results. 91% of the posts by patients were shared during the post-operative period. 93% of posts had a positive tone to them.34% of posts focused on both ADLs and 33.8% rehabilitation. TKA patients shared more about their surgical site (14.5% vs. 3.3%, p < .001) and rehabilitation (58.9% vs. 8.8%, p < .001) than THA patients, whereas THA patients shared more about their ADLs than TKA patients (60.5% vs. 7.6%, p < .001). Conclusions. When sharing their experience on Instagram, arthroplasty patients did so with a positive tone, starting a week after surgery. TKA posts focused more on rehabilitation and wound healing than THA patients, while THA patients shared more posts on ADLs. The analysis of social media posts provides insight into what matters to patients following TJA


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_1 | Pages 214 - 214
1 Jan 2013
Jain N Tucker H David M Calder J
Full Access

Introduction. Fifth metatarsal fractures are a common injury suffered by professional footballers. It is frequently reported in the media that such an injury will result in a 6-week absence from play. The purpose of this study was to assess frequency of media reporting of fifth metatarsal fractures, the time that is predicted by the media before the player will return to soccer and the actual time taken for the player to return to play. Methods. Internet search engines identified 40 professional footballers that suffered 49 fifth metatarsal fractures between 2001 and 2011. Information was collected from various media and team websites, match reports, photography and video evidence to provide data regarding the mechanism of injury, playing surface conditions, frequency of fractures per season, fracture treatment, estimated amount of time to be missed due to the injury and time taken to return to play. Results. 49 fractures were identified in the 40 players. 6 players suffered a recurrence of a previous fifth metatarsal fracture. 3 players sustained 5. th. metatarsal fractures in their contralateral foot. There was a trend of increased reporting of fifth metatarsal fractures over the course of the decade. 43% of fractures were sustained without contact with another player, 24% were suffered in a tackle. 77% of fractures were sustained in dry conditions. 90% of fractures were treated surgically. Mean return to play time was 14.6 weeks (range 5 to 34 weeks). The mean estimated absence in the media was 7.8 weeks (range 2 to 16 weeks), median 6 weeks. Conclusions. Fifth metatarsal fractures are being commonly reported in professional footballers with an increasing trend. Most are treated surgically. It appears that the commonly quoted period of 6 weeks before return to play is unrealistic. It should be expected that a player would be unavailable for 3 months


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_20 | Pages 67 - 67
1 Nov 2016
Grant M Epure L Salem O Alaqeel M Antoniou J Mwale F
Full Access

Testing potential therapeutics in the regeneration of the disc requires the use of model systems. Although several animal models have been developed to test intervertebral disc (IVD) regeneration, application becomes costly when used as a screening method. The bovine IVD organ culture system offers an inexpensive alternative, however, in the current paradigm, the bony vertebrae is removed to allow for nutrient diffusion to disc cells. This provides limitations on the conditions and strategies one can employ in investigating IVD regeneration and mechanisms in degenerative disc disease (i.e. complex loading). Although one method has been attempted to extend the survival of bovine vertebrae containing IVDs (vIVD) cell viability declined after two weeks in culture. Our goal was to develop and validate a long-term organ culture model with vertebral bone, which could be used subsequently for studying biological repair of disc degeneration and biomechanics. Preparation of vIVDs: Bovine IVDs from the tails of 22–28-month-old steers were prepared for organ culture by parallel cuts through the adjacent vertebral bodies at 1cm from the endplates using an IsoMet®1000 Buehler precision sectioning saw. vIVDs were split into two groups: IVDs treated with PrimeGrowth Media kit (developed by Intervertech and licensed to Wisent Bioproducts) and IVDs with DMEM. The PrimeGrowth group was incubated for 1h in PrimeGrowth Isolation Medium (Cat# 319–511-EL) and the DMEM group for 1h in DMEM. After isolation, IVDs were washed in PrimeGrowth Neutralisation Medium (Cat# 319–512-CL) while the other IVDs were washed in DMEM. The discs isolated with PrimeGrowth and DMEM were cultured for up to 5 months in sterile vented 60 ml Leakbuster™ Specimen Containers in PrimeGrowth Culture Medium (Cat# 319–510-CL) and DMEM with no mechanical load applied. Live/Dead Assay: vIVDs cultured for 1 or 5 months were dissected and cell viability was assessed in different regions by confocal microscopy using Live/Dead® (Invitrogen) fluorescence assay. Glucose Diffusion: After one month of culture, vIVDs were incubated for 72h in diffusion medium containing PBS (1x), CaCl2 (1mM), MgCl2 (0.5mM), KCl2 (5mM), 0.1% BSA and 150µM 2-NDBG, a D-glucose fluorescent analogue. Discs were dissected and IVD tissues were incubated in guanidinium chloride extraction buffer. Extracts were measured for fluorescence. After 5 months in culture, vIVDs prepared with PrimeGrowth kit demonstrated approximately 95% cell viability in all regions of the disc. However, dramatic reductions (∼90%) in vIVD viability were measured in DMEM group after 1 month. vIVD viability was related to the amount of 2-NDBG incorporated into the disc tissue. We have developed a novel method for isolating IVDs with vertebral bone capable of long-term viability. This method may not only help in the discovery of novel therapeutics in disc regeneration, but could also advance our understanding on complex loading paradigms in disc degeneration


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_17 | Pages 74 - 74
24 Nov 2023
Roussel-Gaillard T Bouchiat-Sarabi C Souche A Ginevra C Dauwalder O Benito Y Salord H Vandenesch F Laurent F
Full Access

Aim. While 16S rRNA PCR - Sanger sequencing has paved the way for the diagnosis of culture-negative bacterial infections, it does not provide the composition of polymicrobial infections. We aimed to evaluate the performance of the Nanopore-based 16S rRNA metagenomic approach using partial-length amplification of the gene, and to explore its feasibility and suitability as a routine diagnostic tool for bone and joint infections (BJI) in a clinical laboratory. Method. Sixty-two clinical samples from patients with BJI were sequenced on MinION* using the in-house partial amplification of the 16S rRNA gene. BJI were defined based on the ICM Philly 2018 and EBJIS 2021 criteria. Among the 62 samples, 16 (26%) were culture-positive, including 6 polymicrobial infections, and 46 (74%) were culture-negative from mono- and polymicrobial infections based on Sanger-sequencing. Contamination, background noise definition, bacterial identification, and time-effectiveness issues were addressed. Results. Results were obtained within one day. Setting a threshold at 1% of total reads overcame the background noise issue and eased interpretation of clinical samples. The partial 16S rRNA metagenomics approach had a greater sensitivity compared both to the culture method and the Sanger sequencing. All the 16 culture-positive samples were confirmed with the metagenomic sequencing. Bacterial DNA was detected in 32 culture-negative samples (70%), with pathogens consistent with BJI. The 14 Nanopore negative samples included 7 negative results confirmed after implementation of other molecular techniques and 7 false-negative MinION results: 3 Kingella kingae infections detected after targeted-PCR only, 2 Staphylococcus aureus infections and 2 Pseudomonas aeruginosa infections sterile on agar plate media and detected only after implementation of blood culture media, advocating for the very low inoculum. Conclusions. The results discriminated polymicrobial samples, and gave accurate bacterial identifications compared to Sanger-based results. They confirmed that Nanopore technology is user-friendly as well as cost- and time-effective. They also indicated that 16S rRNA targeted metagenomics is a suitable approach to be implemented for routine diagnosis of culture-negative samples in clinical laboratories. * Oxford Nanopore Technologies


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_19 | Pages 44 - 44
22 Nov 2024
De Bleeckere A Neyt J Vandendriessche S Boelens J Coenye T
Full Access

Aim. Fast and accurate identification of pathogens causing periprosthetic joint infections (PJI) is essential to initiate effective antimicrobial treatment. Culture-based approaches frequently yield false negative results, despite clear signs of infection. This may be due to the use of general growth media, which do not mimic the conditions at site of infection. Possible alternative approaches include DNA-based techniques, the use of in vivo-like media and isothermal microcalorimetry (ITC). We developed a synthetic synovial fluid (SSF) medium that closely resembles the in vivo microenvironment and allows to grow and study PJI pathogens in physiologically relevant conditions. In this study we investigated whether the use of ITC in combination with the SSF medium can improve accuracy and time to detection in the context of PJI. Methods. In this study, 120 synovial fluid samples were included, aspirated from patients with clinical signs of PJI. For these samples microbiology data (obtained in the clinical microbiology lab using standard procedures) and next generation sequencing (NGS) data, were available. The samples were incubated in the SSF medium at different oxygen levels (21% O. 2. , 3% O. 2. and 0% O. 2. ) for 10 days. Every 24h, the presence of growth was checked. From positive samples, cultures were purified on Columbia blood agar and identified using MALDI-TOF. In parallel, heat produced by metabolically active microorganisms present in the samples was measured using ITC (calScreener, Symcel), (96h at 37°C, in SSF, BHI and thioglycolate). From the resulting thermograms the ‘time to activity’ could be derived. The accuracy and time to detection were compared between the different detection methods. Results. So far, seven samples were investigated. Using conventional culture-based techniques only 14.3% of the samples resulted in positive cultures, whereas NGS indicated the presence of microorganisms in 57.1% of the samples (with 3/7 samples being polymicrobial). Strikingly, 100% of the samples resulted in positive cultures after incubation in the SSF medium, with time to detection varying from 1 to 9 days. MALDI-TOF revealed all samples to be polymicrobial after cultivation in SSF, identifying organisms not detected by conventional techniques or NGS. For the samples investigated so far, signals obtained with ITC were low, probably reflecting the low microbial load in the first set of samples. Conclusion. These initial results highlight the potential of the SSF medium as an alternative culture medium to detect microorganisms in PJI context. Further studies with additional samples are ongoing; in addition, the microcalorimetry workflow is being optimized


Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_12 | Pages 74 - 74
1 Dec 2022
Changoor A Suderman R Wood B Grynpas M Hurtig M Kuzyk P
Full Access

Large cartilage lesions in younger patients can be treated by fresh osteochondral allograft transplantation, a surgical technique that relies on stable initial fixation and a minimum chondrocyte viability of 70% in the donor tissue to be successful. The Missouri Osteochondral Allograft Preservation System (MOPS) may extend the time when stored osteochondral tissues remain viable. This study aimed to provide an independent evaluation of MOPS storage by evaluating chondrocyte viability, chondrocyte metabolism, and the cartilage extracellular matrix using an ovine model. Femoral condyles from twelve female Arcott sheep (6 years, 70 ± 15 kg) were assigned to storage times of 0 (control), 14, 28, or 56 days. Sheep were assigned to standard of care [SOC, Lactated Ringer's solution, cefazolin (1 g/L), bacitracin (50,000 U/L), 4°C storage] or MOPS [proprietary media, 22-25°C storage]. Samples underwent weekly media changes. Chondrocyte viability was assessed using Calcein AM/Ethidium Homodimer and reported as percent live cells and viable cell density (VCD). Metabolism was evaluated with the Alamar blue assay and reported as Relative Fluorescent Units (RFU)/mg. Electromechanical properties were measured with the Arthro-BST, a device used to non-destructively compress cartilage and calculate a quantitative parameter (QP) that is inversely proportional to stiffness. Proteoglycan content was quantified using the dimethylmethylene blue assay of digested cartilage and distribution visualized by Safranin-O/Fast Green staining of histological sections. A two-way ANOVA and Tukey's post hoc were performed. Compared to controls, MOPS samples had fewer live cells (p=0.0002) and lower VCD (p=0.0004) after 56 days of storage, while SOC samples had fewer live cells (p=0.0004, 28 days; p=0.0002, 56 days) and lower VCD (p=0.0002, 28 days; p=0.0001, 56 days) after both 28 and 56 days (Table 1). At 14 days, the percentage of viable cells in SOC samples were statistically the same as controls but VCD was lower (p=0.0197). Cell metabolism in MOPS samples remained the same over the study duration but SOC had lower RFU/mg after 28 (p=0.0005) and 56 (p=0.0001) days in storage compared to controls. These data show that MOPS maintained viability up to 28 days yet metabolism was sustained for 56 days, suggesting that the conditions provided by MOPS storage allowed fewer cells to achieve the same metabolic levels as fresh cartilage. Electromechanical QP measurements revealed no differences between storage methods at any individual time point. QP data could not be used to interpret changes over time because a mix of medial and lateral condyles were used and they have intrinsically different properties. Proteoglycan content in MOPS samples remained the same over time but SOC was significantly lower after 56 days (p=0.0086) compared to controls. Safranin-O/Fast Green showed proteoglycan diminished gradually beginning at the articular surface and progressing towards bone in SOC samples, while MOPS maintained proteoglycan over the study duration (Figure 1). MOPS exhibited superior viability, metabolic activity and proteoglycan retention compared to SOC, but did not maintain viability for 56 days. Elucidating the effects of prolonged MOPS storage on cartilage properties supports efforts to increase the supply of fresh osteochondral allografts for clinical use. For any figures or tables, please contact the authors directly


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_8 | Pages 54 - 54
1 Aug 2020
Bisson D Haglund L Kocabas S Ouellet J Saran N
Full Access

Adolescent idiopathic scoliosis (AIS) is a poorly understood progressive curvature of the spine. The 3-dimmensionnal spinal deformation brings abnormal biomechanical stresses on the load-bearing organs. We have recently reported for the first time the presence of facet joint cartilage degeneration comparable to age-related osteoarthritis in scoliotic adolescents. To better understand the degenerative mechanisms and explore new therapeutic possibilities, we focused on Toll-like receptors (TLRs) which are germline-encoded pattern recognition receptors that recognize pathogens and endogenous proteins such as fragmented extracellular matrix components (alarmins) present in intervertebral discs (IVD) and articular cartilage. Once activated, they regulate the production pro-inflammatory cytokines, proteases and neurotrophins which can lead to matrix catabolism, inflammation and potentially pain. These mechanisms have however not been studied in the context of AIS or facet joints. Facet joints of AIS patients undergoing corrective surgery and of cadaveric donors (non-scoliotic) were collected from consenting patients or organ donors with ethical approval. Cartilage biopsies and chondrocytes were isolated using 3mm biopsy punches and collagenase type 2 digestion respectively. qPCR was used to assess gene expression of the degenerative factors (MMP3, MMP13, IL-1ß, IL-6, IL-8) The biopsies were cut into two equal halves, one was treated for 4 days with a TLR2 agonist (Pam2CSK4, Invivogen) in serum-free chondrocyte media while the other one was cultured in media alone. MMP3, MMP13, IL-6 and IL-8 ELISAs and DMMB assays were performed on the biopsy cultured media. The ex vivo cartilage was then fixed, cryosectionned and also stained with SafraninO-Fast Green dyes. Baseline gene expression levels of TLR1,−2,−4,−6 were all upregulated in scoliotic chondodryctes compared to non-scoliotic. Pearson correlation analysis revealed that all TLR1,−2,−4,−6 gene expression correlated strongly and significantly with degenerative markers (MMP3, MMP13, IL-6, IL-8) in scoliotic chondrocytes but not in non-scoliotic. (Figure 1) When monolayer facet joint chondrocytes were activated with Pam2CSk4, there was a significant upregulation in previously described degenerative markers, TLR2 and NGF, a potent neurotrophin. These findings were strengthened by protein secretion analysis of select markers such as MMP-3, −13, IL-6 and IL-8 which were all upregulated after TLR2 activation. The scoliotic biopsies which were treated with Pam2CSK4 had a significant loss of proteoglycan content as shown by histology, was reflected in the proteoglycan content found in the media by DMMB. TLR gene expression levels were upregulated and correlated with proteases and pro-inflammatory cytokines in degenerating scoliotic cartilage, suggesting they promote cartilage degradation, especially considering the lack of correlations in non-scoliotic healthy cartilage. Furthermore, when TLRs are activated by Pam2CSK4 it triggers the release of the same proteases and pro-inflammatory cytokines in our ex vivo experiment. All this exacerbates the loss of proteoglycan in the cartilage ex vivo model after four days of insult with a TLR2 specific agonist. These results suggest that TLRs are an important pathway partaking in the cartilage degeneration of scoliotic facet joints and potentially all cartilage beyond our scope. Future studies aim at blocking TLRs to alleviate proteolysis and inflammation. For any figures or tables, please contact the authors directly


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_15 | Pages 87 - 87
1 Dec 2021
Mannala G Rupp M Walter N Brunotte M Alagboso F Docheva D Brochhausen C Alt V
Full Access

Aim. Here, we are aimed to evaluate bacteriophage (191219) to treat S. aureus implant-associated bone infections by means of testing against S. aureus during its planktonic, biofilm and intracellular growth phases and finally assessing antimicrobial effect on in vivo biofilm formed on metal K-wire in an alternative insect model Galleria mellonella. Method. The bacteriophages (191219) were provided from D&D Pharma GmbH. These bacteriophages were tested against S. aureus EDCC 5055 (MSSA) and S. aureus DSM 21979 (MRSA) strains. To assess the activity of bacteriophages against planktonic growth phase, bacteriophages, and S. aureus EDCC 5055(1×10. 7. CFU/ml) were co-cultured in LB media as multiplicity of infection (MOI) of 10, 1, 0.1, and 0.01 for 24 hours at 37. o. C and finally plated out on the LB agar plates to estimate the bacterial growth. The antimicrobial activity of bacteriophages on biofilms in vitro was measured by analysing the incubating the several fold dilutions of bacteriophages in LB media with biofilms formed on 96-well plate. The eradication of biofilm was analysed with crystal violet as well as CFU analysis methods. Later, the effect of bacteriophages on intracellular growth of S. aureus in side osteoblast was tested by treating the S. aureus infected osteoblasts at 2h, 4h and 24h time points of post treatment. In addition, we have analysed synergistic effect with gentamicin and rifampicin antibiotics to clear intracellular S. aureus. Finally, experiments are performed to prove the effect of bacteriophages to clear in vivo biofilm using alternative insect model G. mellonella as well as to detect the presence of bacteriophages inside the osteoblasts through transmission electron microscopy (TEM) analysis. Results. Our results demonstrate the in vitro efficacy of bacteriophages against planktonic S. aureus. Transmission electron microscopy (TEM) experiments revealed severe infection of bacteria by bacteriophages. Bacteriophages also eradicated in a dose-dependent manner in vitro S. aureus biofilm formation and were active against intracellular S. aureus in an osteoblastic cell line. TEM analysis visualized the effect of the bacteriophages on S. aureus inside the osteoblasts with the destruction of the intracellular bacteria and formation of new bacteriophages. For the Galleria infection model, single administration of phages failed to show improvement in survival rates, but exhibited some synergistic effects with gentamicin or rifampicin, which was not statistically significant. Conclusions. In summary, bacteriophages could be a potential adjuvant treatment strategy for patients with implant-associated biofilm infections. Further preclinical and clinical trials are required to establish adequate treatment protocols


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_2 | Pages 52 - 52
10 Feb 2023
Di Bella C
Full Access

3D printing and Bioprinting technologies are becoming increasingly popular in surgery to provide a solution for the regeneration of healthy tissues. The aim of our project is the regeneration of articular cartilage via bioprinting means, to manage isolated chondral defects. Chrondrogenic hydrogel (chondrogel: GelMa + TGF-b3 and BMP6) was prepared and sterilised in our lab following our standard protocols. Human adipose-derived mesenchymal stem cells were harvested from the infrapatellar fat pad of patients undergoing total knee joint replacements and incorporated in the hydrogel according to our published protocols. The chondrogenic properties of the chondrogel have been tested (histology, immunohistochemistry, PCR, immunofluorescence, gene analysis and 2. nd. harmonic generation microscopy) in vitro and in an ex-vivo model of human articular defect and compared with standard culture systems where the growth factors are added to the media at repeated intervals. The in-vitro analysis showed that the formation of hyaline cartilage pellet was comparable between the two strategies, with a similar metabolic activity of the cells. These results have been confirmed in the ex-vivo model: hyaline-like cartilage was observed within the chondral defect in both the chondrogel group and the control group after 28 days in culture. The use of bioprinting techniques in vivo requires the ability of stem cells to access growth factors directly in the environment they are in, as opposed to in vitro techniques where these factors are provided externally at recurrent intervals. This study showed the successful strategy of incorporating chondrogenic growth factors for the formation of hyaline-like cartilage in vitro and in an ex-vivo model of chondral loss. The incorporation of chondrogenic growth factors in a hydrogel is a possible strategy for articular cartilage regeneration


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_17 | Pages 61 - 61
24 Nov 2023
Käschner J Theil C Gosheger G Schaumburg F Schwarze J Puetzler J Moellenbeck B
Full Access

Aims. The microbiological detection of microorganisms plays a crucial role in the diagnosis as well as in the targeted systemic and local antibiotic therapy of periprosthetic infections (PJI). Despite extensive efforts to improve the sensitivity of current culture methods, the rate of culture-negative infections is approximately 10–20% of all PJI. This study investigates an preanalytical algorithm (culture collection and direct processing in the OR) to potentially increasing culture yield in patients with PJI. Methods. Patients undergoing staged revision arthroplasty for PJI in our hospital between October 2021 and 2022 were included in this prospective pilot study. Intraoperatively twenty tissue samples were collected and distributed among 4 groups. Tissue samples were prepared according to standard without medium and in thioglycolate medium at 3 different temperatures (room temperature, 4°C, 37° for 24h before transport to microbiology) directly in the OR. The removed implants were sonicated. Cultures were investigated on days 1, 3, 7, 12, 14 for possible growth. All grown organism, the number of positive samples and the time to positivity were recorded and compared. Results. 71 patients were included (age, gender). Compared to the standard procedure the thioglycolate broth at 37°C was significantly more often culture-negative (p=0.031). No significant differences in the frequency of culture-negative samples were detected in the other groups. 8.4% (6/71) patients were culture negative in the standard culture but positive in the thioglycolate samples. In contrast, 7% (5/71) were culture negative in the thioglycolate samples but had bacterial detection in the standard approach. In 4.7% (3/63) of the patients, only the sonication showed growth, whereas 25.4% (16/63) had no growth in sonication fluid but in one of the cultures. For S. caprae, there was a significantly different distribution (p=0.026) with more frequent detection in the group with thioglycolate at 37°C. The standard procedure (p=0.005) and sonication (p=0.023) showed a shorter time to positivity of the culture compared to the thioglycolate approach at 4°C. Conclusions. No general differences could be shown between the standard preparation and the thioglycolate preparation; in particular, storage at different temperatures does not seem to result in any difference. For individual cases (8% in this study), bacterial growth was detected in the thioglycolate group that would have been culture-negative otherwise. There might be organism dependent differences in growth in different media


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_19 | Pages 28 - 28
22 Nov 2024
Boyce S Nichol T Smith T Le Maitre C
Full Access

Aim. Periprosthetic joint infections follow 1-3% of arthroplasty surgeries, with the biofilm nature of these infections presenting a significant treatment challenge. 1. Prevention strategies include antibiotic-loaded bone cement; however, increases in cementless procedures means there is an urgent need for alternative local antimicrobial delivery methods. 2. A novel, ultrathin, silica-based sol-gel technology is evaluated in this research as an anti-infective coating for orthopaedic prosthetic devices, providing local antibiotic release following surgery. Method. Reduction in clinically relevant microbial activity and biofilm reduction by antimicrobial sol-gel coatings, containing a selection of antibiotics, were assessed via disc diffusion and microdilution culture assays using the Calgary biofilm device. 3. Proliferation, morphology, collagen, and calcium production by primary bovine osteoblasts cultured upon antibiotic sol-gel surfaces were examined, and cytotoxicity evaluated using Alamar blue staining and lactate dehydrogenase assays. Concentrations of silica, calcium and phosphorus compounds within the cell layer cultured on sol-gel coatings and concentrations eluted into media, were quantified using ICP-OES. Furthermore, cellular phenotype was assessed using alkaline phosphatase activity with time in culture. Results. Low antibiotic concentrations within sol-gel had an inhibitory effect on clinically relevant biofilm growth, for example 0.8 mg ml. -1. tobramycin inhibited clinically isolated S. aureus (MRSA) growth with an 8-log reduction in viable colony forming units. There was no significant difference in metabolic activity between untreated and sol-gel exposed primary bovine osteoblasts in elution-based assays. Reduction (2-fold) in metabolic activity in direct contact assays after 48 hours exposure was likely to be due to increased osteoinduction, whereas no impact upon cell proliferation were observed (p=0.92 at 14 days culture). The morphology of primary osteoblasts was unaffected by culture on sol-gel coatings and collagen production was maintained. Calcium containing nodule production within bovine osteoblastic cells was increased 16-fold after 14 days culture upon sol-gel. Conclusions. The ultrathin sol-gel coating showed low cytotoxicity, strong biofilm reducing activity and antimicrobial activity, which was comparable to antibiotics alone, demonstrating that sol-gel delivery of antibiotics could provide local antimicrobial effects to inhibit PJI growth without the need for bone cement. Future work will develop and evaluate sol-gel performance in an ex vivo explant bone infection model which will reduce the need for animal experimentation


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_7 | Pages 65 - 65
1 Jul 2020
Wilkinson JM Gartland A Morell D Shah K Sudsok P
Full Access

Local and systemic concentrations of cobalt (Co) and chromium (Cr) ions may be elevated in patients with accelerated tribo-corrosion at prosthesis bearing surfaces and modular taper junctions. Previous studies by us and others have shown that exposure to these metals negatively affect the viability and function of osteoblasts and osteoclasts in vitro, with implications for bone health. More recently, we have observed an increase in total bone mineral density and reduced bone turnover (TRAP5b and osteocalcin) in patients with well-functioning metal-on-metal hip resurfacing (MOMHR). Here, we provide data to support the hypothesis that osteoclast differentiation and function is altered in this patient population, and that this effect is transferrable through their serum. Patients with well-functioning MOMHR (n=18) at median follow-up of 8 years were individually matched for gender, age and time-since-surgery to a low-exposure group consisting of patients with metal-on-polyethylene total hip arthroplasty (THA). The median circulating concentrations of Co and Cr for the MOMHR group were 2.53µg/L and 2.5µg/L respectively, compared to 0.02µg/L and 0.03µg/L for the THA group. Monocyte fraction of peripheral blood was isolated from these patients, seeded onto dentine wafers and differentiated into osteoclasts using media supplemented with RANKL and M-CSF (osteoclastogenic media, OM). Cultures were monitored for the onset of resorption, following which they were treated with OM, autologous serum or serum from the other individual within the matched MOMHR - THA pair, all supplemented with RANKL and M-CSF. At the end of the culture, cells were TRAP stained and quantified for total osteoclast number, number of resorbing osteoclasts and percentage resorption using the CellD Software Package (Olympus, Southend-on-Sea, U.K.). For cells differentiated in osteoclastogenic media, the resorbing ability of osteoclasts derived from MOMHR patients was reduced by 30% (P=0.046) compared to THA. Correlation analyses showed that chronic exposure to Co and Cr trends towards negative association with resorption ability of these osteoclasts (r = −0.3, P=0.06). Furthermore, the resorbing ability of osteoclasts generated from MOMHR patients and differentiated in autologous serum was reduced 33% (p < 0 .0001), whilst matched THA serum caused a smaller reduction of 14% (p < 0 .01). When cells derived from THA patients were differentiated in autologous serum, the resorbing ability of osteoclasts was similarly reduced by 35% (p < 0 .0001), whilst the matched MOMHR serum also caused a reduction of 21% (p < 0 .0001). Reduced osteoclastogenic response of precursor cells from patients with higher circulating Co and Cr suggests an inherent change in their potential to differentiate into functional osteoclasts. The data also suggests that functional response of mature osteoclasts generated from patient precursor cells are dependent on the prior systemic metal concentrations and the presence of higher circulating CoCr in patients with MOMHR. These effects are modest, but may explain the subtle increase in systemic bone mineral density and decreased bone turnover observed in patients after 8 years exposure compared to age, sex, and exposure-time matched patients who received a conventional THA


Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_12 | Pages 88 - 88
1 Dec 2022
Del Papa J Champagne A Shah A Toor J Larouche J Nousiainen M Mann S
Full Access

The 2020-2021 Canadian Residency Matching Service (CaRMS) match year was altered on an unprecedented scale. Visiting electives were cancelled at a national level, and the CaRMS interview tour was moved to a virtual model. These changes posed a significant challenge to both prospective students and program directors (PDs), requiring each party to employ alternative strategies to distinguish themselves throughout the match process. For a variety of reasons, including a decline in applicant interest secondary to reduced job prospects, the field of orthopaedic surgery was identified as vulnerable to many of these changes, creating a window of opportunity to evaluate their impacts on students and recruiting residency programs. This longitudinal survey study was disseminated to match-year medical students (3rd and 4th year) with an interest in orthopaedic surgery, as well as orthopaedic surgery program directors. Responses to the survey were collected using an electronic form designed in Qualtrics (Qualtrics, 2021, Provo, Utah, USA). Students were contacted through social media posts, as well as by snowball sampling methods through appropriate medical student leadership intermediates. The survey was disseminated to all 17 orthopedic surgery program directors in Canada. A pre-match and post-match iteration of this survey were designed to identify whether expectations differed from reality regarding the effect of the COVID-19 pandemic on the CaRMS match 2020-2021 process. A similar package was disseminated to Canadian orthopaedic surgery program directors pre-match, with an option to opt-in for a post-match survey follow-up. This survey had a focus on program directors’ opinions of various novel communication, recruitment, and assessment strategies, in the wake of the COVID-19 pandemic. Students’ responses to the loss of visiting electives were negative. Despite a reduction in financial stress associated with reduced need to travel (p=0.001), this was identified as a core component of the clerkship experience. In the case of virtual interviews, students’ initial trepidation pre-CaRMS turned into a positive outlook post-CaRMS (significant improvement, p=0.009) indicating an overall satisfaction with the virtual interview format, despite some concerns about a reduction in their capacity to network. Program directors and selection committee faculty also felt positively about the virtual interview format. Both students and program directors were overwhelmingly positive about virtual events put on by both school programs and student-led initiatives to complement the CaRMS tour. CaRMS was initially developed to facilitate the matching process for both students and programs alike. We hope to continue this tradition of student-led and student-informed change by providing three evidence-based recommendations. First, visiting electives should not be discontinued in future iterations of CaRMS if at all possible. Second, virtual interviews should be considered as an alternative approach to the CaRMS interview tour moving forward. And third, ongoing virtual events should be associated with a centralized platform from which programs can easily communicate virtual sessions to their target audience


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_5 | Pages 4 - 4
23 Apr 2024
Turley S Booth C Gately S McMahon L Donnelly T Ward A
Full Access

The requirement for the peer support groups were born out of concern for the psychological wellbeing of the paediatric patients and to assess if this would improve their wellbeing during their treatment. Groupwork is a method of Social Work which is recognised as a powerful tool to allow people meet their need for belonging while also creating the forum for group members to empower one another. Social Work meet with all paediatric patients attending the limb reconstruction service in the hospital. The focus of the Medical Social Worker (MSW) is to provide practical and emotional support to the patient and their parent/guardian regarding coping with the frame. Some of the challenges identified through this direct work include patient's struggling with the appearance of the frame and allowing peers to see the frame. The peer support group aims to offer its attendees the opportunities to engage with fellow paediatric patients in the same position. It allowed them to visually identify with one another. We wanted to create a safe space to discuss the emotional impact of treatment and the frames. It normalises the common problems paediatric patients face during treatment. We assisted our participants to identify new coping techniques and actions they can take to make their journey through limb reconstruction treatment more manageable. Finally, we aimed to offer the parents space to similarly seek peer support with regard to caring for a child in treatment. All paediatric patients were under the care of the Paediatric Orthopaedic Consultant and were actively engaging with the limb reconstruction multi-disciplinary team (MDT). The patient selection was completed by the MDT; based on age, required to be in active treatment, or their frames were removed within one month prior to the group's commencement. Qualitative data was collected through written questionnaires and reflection from participants in MSW sessions. We also used observational data from direct verbal feedback from the MDT. In the first group, parents gave feedback due to participants age and completed written feedback forms. For our second group, initial feedback was collated from the participants after the first session to get an understanding of group expectations. Upon completion, we collected data from both the participants and the parents. Qualitative and scaling questions gathered feedback on their experience of participating in the group. We held two peer support groups in 2022:One group for patients aged between 3–6 years in January 2022 across two sessions, which was attended by four patients. The second group for young teenage patients aged between 11–15 years in April 2022 across four sessions, which was attended by five patients. The written feedback received from group one focused on eliciting the participant's experience of the groupwork. 100% of participants identified the shared experience as the main benefit of the groupwork. 100% of participants agreed they would attend a peer support group again, and no participant had suggestions for improvement to the group. Feedback did indicate that group work at the beginning of treatment could be more beneficial. In relation to the second group, 60% of the paediatric patients and their parents returned the questionnaires. All of the parent's feedback identified that it was beneficial for their child to meet peers in a similar situation. They agreed that it was beneficial to meet other parents, so they could get support and advice from one another. On a scale between 1 and 5, 5 being the highest score, the participants scored high on the group work meeting their expectations, enjoyment of the sessions, and the group work was a beneficial aspect of their treatment. All respondents would strongly recommend groupwork to other paediatric patients attending for limb reconstruction treatment. Overall, the MDT limb reconstruction team, found the peer support group work of great benefit to the participants and their parents. The MSW team identified that during a period on the limb reconstruction team, when a high number of patients were in active treatment, the workload of the MSW also increased reflecting this activity. Common issues and concerns were raised directly to MSW (particularly from group two) regarding numerous difficulties they experienced trying to cope with the frame. The group work facilitators created a space where the participants could get peer support, share issues caused by the frame, hear directly from others, and that they too experience similar feelings or issues. Collectively, they identified ways of coping and promoting their own wellbeing while in treatment. The participants in group two, subsequently created a group on social media, to be able to continue their newly formed friendships and to continue to update one another on their treatment journeys. The participants self-requested another group in the future. This was facilitated in November 2023, the facilitators sought more feedback from all participants and their parents after this session. These findings will contribute towards the analysis for the presentation. Peer support groupwork was presented at the hospital's foundation day and has been well received by senior management in the hospital, as a positive addition to the limb reconstruction service. The focus of the MDT in 2024, is to further develop and facilitate more peer support groups for our paediatric patients


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_9 | Pages 23 - 23
1 May 2016
Matsui S Majima T Mominoki K Koizumi R Kawaji H Takahashi K Takai S
Full Access

Introduction. Some patients complain ingrown pain or discomfort after implanting Co-Cr conventional endprosthesis of the hip. Some of this complaint may be attributable for effect on cartilage metabolism. It have been reported that ceramic is bioinert for biological tissue. On the other hand, metal including cobalt-chrome (Co-Cr) have some detrimental effect on biological tissue. However, there is no report concerning acetabular cartilage metabolism after hip endprosthesis implantation. In the present study, we hypothesized that ceramic head have small detrimental effect on cartilage cell metabolism. Specific aim of the study is to compare the protein level of inflammation related cytokines, amount of hyaluronic acid (HA) in culture media, and cartilage mRNA expression in organ culture model of hip end prosthesis implanted using ceramic head and Co-Cr head. Materials and Methods. Six acetabulum of 3 matured crossbred pig (average weight: 36 +/− 3.6kg) was retrieved. Animal experiment was performed under the rules of ethical committee of animal experiment. Average diameter of pig acetabulum was 26.3 +/− 0.6 mm. Just after sacrifice, mechanical loading using Instron testing machine with 26mm diameter of Co-Cr in right hip and Ceramic heads in left hip was performed in culture media. Ten thousand cycles of cyclic compression and rotation load (1.5kN to 0.15kN of compression and 12 degrees of rotation) to cartilage was applied at 1Hz (Figure 1). Culture media was analyzed for protein levels of inflammation related cytokines and amount of HA. Relative quantitative reverse transcriptase-polymerase chain reaction (RT-PCR) from acetabular cartilage was performed as previously reported using specific primer sets for type II collagen, aggrecan, TNF-alpha, Interleukine-1 and 6, and MMP-1, 3, 13. Results. IL-1 beta protein level from culture media was significantly higher in Co-Cr than that in Ceramic (155+/−25.2 pg/ml vs. 86.3+/−9.6 pg/ml respectively). MMP-3 protein level had tendency to be higher in culture media from Co-Cr than that from Ceramic (16.3+/−10.6 ng/ml vs. 10.0+/−0.1 ng/ml respectively, p<0.05), however there was no significant difference. There were no significant differences of protein levels from culture media in MMP-1, IL-1a, and TNF between two groups. Amount of HA from culture media of Co-Cr group was significantly higher than that from Ceramic group (337+/−38.4 mg/ml versus 257+/−11.1 mg/ml respectively, p<0.05). Type II collagen mRNA expression was 3 times higher in Ceramic group than that in Co-Cr group. IL-1 beta mRNA expression was 4 times higher in Co-Cr group than that in Ceramic group. Other gene expression had no significant differences. Discussion. The present study showed that Co-Cr affects cartilage metabolism than Ceramic. Co-Cr group had higher protein level and mRNA expression of inflammation related cytokine, IL-1 beta, and higher HA. Concerning the mRNA expression from cartilage, type II collagen was significantly higher in Ceramic group. It has been reported that HA level is high in osteoarthritic joint. These report and our results showed that ceramic head have small detrimental effect on cartilage cell metabolism. There are limitations of the present study. Firstly, the sample size is small. Secondly, we did not evaluate synovial membrane metabolism


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_7 | Pages 56 - 56
1 Jul 2020
Epure LM Grant M Salem O Huk OL Antoniou J Mwale F
Full Access

Osteoarthritis (OA) is a multifactorial debilitating disease that affects over four million Canadians. Although the mechanism(s) of OA onset is unclear, the biological outcome is cartilage degradation. Cartilage degradation is typified by the progressive loss of extracellular matrix components - aggrecan and type II collagen (Col II) – partly due to the up-regulation of catabolic enzymes - aggrecanases a disintegrin and metalloprotease with thrombospondin motifs (ADAMTS-) 4 and 5 and matrix metalloproteinases (MMPs). There is currently no treatment that will prevent or repair joint damage, and current medications are aimed mostly at pain management. When pain becomes unmanageable arthroplastic surgery is often performed. Interest has developed over the presence of calcium crystals in the synovial fluid of OA patients, as they have been shown to activate synovial fibroblasts inducing the expression of catabolic agents. We recently discovered elevated levels of free calcium in the synovial fluid of OA patients and raised the question on its role in cartilage degeneration. Articular cartilage was isolated from 5 donors undergoing total hip replacement. Chondrocytes were recovered from the cartilage of each femoral head or knee by sequential digestion with Pronase followed by Collagenase and expanded in DMEM supplemented with 10% heat-inactivated FBS. OA and normal human articular chondrocytes (PromoCell, Heidelberg, Germany) were transferred to 6-well plates in culture medium containing various concentrations of calcium (0.5, 1, 2.5, and 5 mM CaCl2), and IL-1β. Cartilage explants were prepared from the same donors and included cartilage with the cortical bone approximately 1 cm2 in dimension. Bovine articular cartilage explants (10 months) were used as a control. Explants were cultured in the above mentioned media, however, the incubation period was extended to 21 days. Immunohistochemistry was performed on cartilage explants to measure expression of Col X, MMP-13, and alkaline phosphatase. The sulfated glycosaminoglycan (GAG, predominantly aggrecan) content of cartilage was analyzed using the 1,9-dimethylmethylene blue (DMMB) dye-binding assay, and aggregan fragmentation was determined by Western blotting using antibody targeted to its G1 domain. Western blotting was also performed on cell lysate from both OA and normal chondrocytes to measure aggrecan, Col II, MMP-3 and −13, ADAMTS-4 and −5. Ca2+ significantly decreased the proteoglycan content of the cartilage explants as determined by the DMMB assay. The presence of aggrecan and Col II also decreased as a function of calcium, in both the human OA and bovine cartilage explants. When normal and OA chondrocytes were cultured in medium supplemented with increasing concentrations of calcium (0.5–5 mM Ca2+), aggrecan and Col II expression decreased dose-dependently. Surprisingly, increasing Ca2+ did not induce the release of MMP-3, and −13, or ADAMTS-4 and-5 in conditioned media from OA and normal chondrocytes. Interestingly, inhibition of the extracellular calcium-sensing receptor CaSR) reversed the effects of calcium on matrix protein synthesis. We provide evidence that Ca2+ may play a direct role in cartilage degradation by regulating the expression of aggrecan and Col II through activation of CaSR


Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_1 | Pages 10 - 10
1 Jan 2022
Sobti A Jaffry Z Raj S Yiu A Negida A Singh B Brennan P Imam M Collaborative O
Full Access

Abstract. Background. Healthcare workers have had to make rapid and drastic adjustments to their practice in response to the COVID-19 pandemic. This work describes the effect on their physical, mental, financial and family well-being and assesses the support provided by their institutions. Methods. An online survey was distributed through medical organisations, social media platforms and collaborators to staff based in an operating theatre environment. Results. 1590 responses were received from 54 countries. Average age of participants was between 30 and 40 years old, 64.9% were male, 79.5% were surgeons, 6.2% nurses, 5.4% assistants, 4.2%. Of the total 32.0% had become physically ill since the start of the pandemic. Physical illness was more likely in those with reduced access to personal protective equipment (OR 4.62; CI 2.82–7.56; p<0.001) and regular breaks (OR 1.56; CI 1.18–2.06; p=0.002). Those with a decrease in salary (29% of participants) were more likely to have an increase in anxiety (OR 1.50; CI 1.19–1.89; p=0.001) and depression scores (OR 1.84; CI 1.40–2.43; p<0.001) and those who spent less time with family (35.2%) were more likely to have an increase in depression score (OR 1.74; CI 1.34–2.26; p<0.001). In terms of support, only 36.0% had easy access to occupational health services, 44.0% to mental health services, 16.5% to 24 hour rest facilities and 14.2% to 24 hour food and drink facilities. Conclusion. This work has highlighted a need and ways in which to improve conditions for the health workforce, which will inevitably have a positive impact on the care received by patients


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_17 | Pages 37 - 37
1 Dec 2018
Dupieux C Verhoeven P Descours G Grattard F Benito Y Vandenesch F Cazorla C Ferry T Lustig S Boyer B Boisset S Laurent F Carricajo A
Full Access

Aims. Microbiological diagnosis of bone and joint infections (BJIs) is pivotal. However, no consensus exists about the best choice for techniques to be used and the best indications for molecular methods. Our objectives were: (i) to compare the performance of various microbiological diagnostic methods (cultural and molecular) on synovial fluid specimens and (ii) to select an algorithm for optimizing the diagnosis of BJIs in adults. Methods. This prospective multicentric study (in Lyon and Saint-Etienne, France) included 423 joint fluid samples, collected from 333 adult patients (median age 69 years) suspected for BJI on the basis of medical history and clinical symptoms. For each inclusion, joint fluid and blood culture were collected concomitantly. The synovial fluid was also inoculated into blood culture bottles. Cytology, culture (using 5 solid media and an enrichment broth, incubated for 15 days), universal 16S rRNA PCR and PCR targeting Staphylococcus spp, S.aureus, Streptococcus spp, S.pneumoniae, Kingella kingae, Borrelia burgdorferi and Propionibacterium acnes were systematically performed on synovial fluid. Results. Prosthetic materials were present in 65.0% of the cases and 31.7% of the patients had received antibiotics in the 15 days before puncture. Out of 423 joint fluids, 265 (62.6%) were positive by at least one diagnostic technique (cultural or molecular): 219 mono- and 46 poly-microbial, for a total of 322 bacteria. Identified bacteria were staphylococci in 54.0%, streptococci-enterococci in 15.2%, Gram-negative bacilli in 14.0%, anaerobic species in 10.9% and other bacteria in 5.9% of cases. Comparing the individual performance of each cultural technique, blood culture bottles showed the highest rate of positivity (detecting 61.4 and 58.4% of the bacteria, for the paediatric and anaerobic bottles, respectively) but cannot be performed alone and require to be combined with solid media. The 16S rDNA PCR was positive in only 49.2% of the cases whereas higher detection was obtained with specific PCR. Blood cultures performed concomitantly with joint puncture were positive in only 9.7% of the cases. Conclusions. In order to simplify the culture procedures and to precise the place of PCR for synovial fluid, we propose the following algorithm: joint fluids should be inoculated onto 3 solid media (blood and chocolate agars for 2 days, anaerobic blood agar for 10 days), associated with inoculation into blood culture bottles for 10 days. If culture remains negative, 16S rDNA PCR and/or Staphylococcus PCR should be added. Applying this algorithm on our cohort, 93.6% of the bacteria would have been detected


Bone & Joint Open
Vol. 1, Issue 5 | Pages 131 - 136
15 May 2020
Key T Mathai NJ Venkatesan AS Farnell D Mohanty K

Aims. The adequate provision of personal protective equipment (PPE) for healthcare workers has come under considerable scrutiny during the COVID-19 pandemic. This study aimed to evaluate staff awareness of PPE guidance, perceptions of PPE measures, and concerns regarding PPE use while caring for COVID-19 patients. In addition, responses of doctors, nurses, and other healthcare professionals (OHCPs) were compared. Methods. The inclusion criteria were all staff working in clinical areas of the hospital. Staff were invited to take part using a link to an online questionnaire advertised by email, posters displayed in clinical areas, and social media. Questions grouped into the three key themes - staff awareness, perceptions, and concerns - were answered using a five-point Likert scale. The Kruskal-Wallis test was used to compare results across all three groups of staff. Results. Overall, 315 staff took part in our study. There was a high awareness of PPE guidance at 84.4%, but only 52.4% of staff reported adequate PPE provision. 67.9% were still keen to come to work, despite very high levels of anxiety relating to contracting COVID-19 despite wearing PPE. Doctors had significantly higher ratings for questions relating to PPE awareness compared to other staff groups, while nursing staff and OHCPs had significantly higher levels of anxiety compared to doctors in relation to PPE and contracting COVID-19 (p < 0.05 using a Kruskal-Wallis test). Conclusion. We believe four recommendations are key to improve PPE measures and decrease anxiety: 1) nominated ward/department PPE champions; 2) anonymized reporting for PPE concerns; 3) formal PPE education sessions; and 4) drop-in counselling sessions for staff. We hope the insight and recommendations from this study can improve the PPE situation and maintain the health and wellbeing of the clinical work force, in order to care for COVID-19 patients safely and effectively


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_14 | Pages 26 - 26
1 Dec 2019
Kolenda C Josse J Medina M Fevre C Lustig S Ferry T Laurent F
Full Access

Aim. Staphylococcus aureus is the first causative agent of bone and joints infections (BJI). It causes difficult-to-treat infections because of its ability to form biofilms, and to be internalized and persist inside osteoblastic cells. Recently, phage therapy has emerged as a promising therapy to improve the management of chronic BJI. In the present study, we evaluated the efficacy of an assembly of three bacteriophages previously used in a clinical case report (Ferry, 2018) against S. aureus in in vitro models of biofilm and intracellular osteoblast infection. Methods. Using HG001 S. aureus, the bactericidal activities of the assembly of the three bacteriophages (Pherecydes Pharma) used alone or in association with vancomycin or rifampicin were compared by quantifying the number of viable bacteria in mature biofilms and infected osteoblasts after 24h of exposure. Results. The activity of bacteriophages against biofilm-embedded S. aureus was dose-dependent. Synergistic effects were observed when bacteriophages were combined to antibiotics at the lowest concentrations, with no significant bactericidal activity in monotherapy. In the human osteoblast infection model, we were able to show that phage penetration into osteoblasts was only possible when the cells were infected, suggesting a S. aureus dependent Trojan horse mechanism. The intracellular inoculum in osteoblasts treated with bacteriophages or vancomycin was significantly higher than in cells treated with lysostaphin, used as control condition of rapid killing of bacteria released in the extracellular media after death of infected cells and absence of intracellular activity. These results suggest that bacteriophages are probably both i) inactive in the intracellular compartment and ii) unable to kill all bacteria released after cell lysis into the extracellular medium fast enough to prevent them from reinfecting other osteoblasts. Conversely, the intracellular inoculum recovered from cells treated with vancomycin+bacteriophages was significantly lower than the one inside cells treated with vancomycin or bacteriophages alone, suggesting that this combination allowed a better control of released bacteria in the extracellular media. Finally, bacteriophages did not increase the activity of rifampicin in this model. Conclusion. In conclusion, we showed that the bacteriophages tested were highly active against S. aureus in mature biofilm but had no activity against bacteria internalized in osteoblasts. Additional studies using animal models of BJI and well-conducted clinical trials are needed to further evaluate phage therapy and its positioning in the management of these infections