The early failure and revision of bimodular primary
total hip arthroplasty prostheses requires the identification of the
risk factors for
Aims. There are limited published data detailing the volumetric
INTRODUCTION. Precise determination of
Introduction. Numerous studies have reported on clinically significant volumes of
Introduction. In total joint replacement devices,
Background. Fretting corrosion at the junction of the modular head neck interface in total hip arthroplasty is an area of substantial clinical interest. This fretting corrosion has been associated with adverse patient outcomes, including soft tissue damage around the hip joint. A number of implant characteristics have been identified as risk factors. However, much of the literature has been based on metal on metal total hip arthroplasty or subjective scoring of retrieved implants. The purpose of this study was to isolate specific implant variables and assess for
Introduction. In this study, we aimed to investigate the effect of the topography of the female taper surface on taper wear. Patients/Materials & Methods. We measured volumetric
It has been speculated that high wear at the head-stem taper may contribute to the high failure rates reported for stemmed large head metal-on-metal (LH-MOM) hips. In this study of 53 retrieved LH-MOM hip replacements, we sought to determine the relative contributions of the bearing and taper surfaces to the total wear volume. Prior to revision, we recorded the relevant clinical variables, including whole blood cobalt and chromium levels. Volumetric wear of the bearing surfaces was measured using a coordinate measuring machine and of the taper surfaces using a roundness measuring machine. The mean taper wear volume was lower than the combined bearing surface wear volume (p = 0.015). On average the taper contributed 32.9% of the total wear volume, and in only 28% cases was the taper wear volume greater than the bearing surface wear volume. Despite contributing less to the total
Aims. Taper corrosion has been widely reported to be problematic for modular total hip arthroplasty implants. A simple and systematic method to evaluate taper damage with sufficient resolution is needed. We introduce a semiquantitative grading system for modular femoral tapers to characterize taper corrosion damage. Methods. After examining a unique collection of retrieved cobalt-chromium (CoCr) taper sleeves (n = 465) using the widely-used Goldberg system, we developed an expanded six-point visual grading system intended to characterize the severity, visible
Despite advancements, revision rates following total ankle replacement (TAR) are high in comparison to other total joint replacements. This explant analysis study aimed to investigate whether there was appreciable metal particulate debris release from various contemporary TARs by describing patterns of
Introduction. Total hip replacement failure due to fretting-corrosion remains a clinical concern. We recently described that damage within CoCrMo femoral heads can occur either by mechanically-dominated fretting processes leading to imprinting (via rough trunnions) and surface fretting (via smooth trunnions), or by a chemically-dominated etching process along preferential corrosion sites, termed “column damage”. These corrosion sites occur due to banding of the alloy microstructure. Banding is likely caused during thermo-mechanical processing of the alloy and is characterized by local molybdenum depletion. It was the objective of this study to quantify
Aims. The aims of this study were to evaluate wear on the surface of cobalt-chromium (CoCr) femoral components used in total knee arthroplasty (TKA) and compare the wear of these components with that of ceramic femoral components. Methods. Optical profilometry was used to evaluate surface roughness and to examine the features created by the wear process in a knee wear simulator. We developed a method of measuring surface changes on five CoCr femoral components and quantifying the
Aims. We sought to determine whether cobalt-chromium alloy (CoCr) femoral
stem tapers (trunnions) wear more than titanium (Ti) alloy stem
tapers (trunnions) when used in a large diameter (LD) metal-on-metal
(MoM) hip arthroplasty system. Patients and Methods. We performed explant analysis using validated methodology to
determine the volumetric
Objectives. The use of ceramic femoral heads in total hip arthroplasty (THA) has increased due to their proven low bearing wear characteristics. Ceramic femoral heads are also thought to reduce wear and corrosion at the head-stem junction with titanium (Ti) stems when compared with metal heads. We sought to evaluate taper damage of ceramic compared with metal heads when paired with cobalt chromium (CoCr) alloy stems in a single stem design. Methods. This retrieval study involved 48 total hip arthroplasties (THAs) with CoCr V40 trunnions paired with either CoCr (n = 21) or ceramic (n = 27) heads. The taper junction of all hips was evaluated for fretting/corrosion damage and volumetric
Objectives. Mechanical wear and corrosion at the head-stem junction of total hip arthroplasties (THAs) (trunnionosis) have been implicated in their early revision, most commonly in metal-on-metal (MOM) hips. We can isolate the role of the head-stem junction as the predominant source of metal release by investigating non-MOM hips; this can help to identify clinically significant volumes of
Trunnionosis, due to mechanical wear and/or corrosion at the head stem taper junction, can occur in metal on polyethylene (MOP) hip implants. In some patients this results in severe soft tissue destruction or Adverse Reaction to Metal Debris (ARMD). The amount of material required to cause ARMD is unknown but analyses of retrieved hips may provide the answer to this clinically important question. We collected implants from 20 patients with failed hips with MOP bearings, revised due to ARMD. We collected clinical, imaging and blood test data. We graded the severity of taper corrosion (1 to 4), and quantified the volume of
Introduction. There is considerable interest in the orthopaedic community in understanding the multifactorial process of taper fretting corrosion in total hip arthroplasty (THA). Previous studies have identified some patient and device factors associated with taper damage, including length of implantation, stem flexural rigidity, and head offset. Due to the complexity of this phenomenon, we approached the topic by developing a series of matched cohort studies, each attempting to isolate a single implant design variable, while controlling for confounding factors to the extent possible. We also developed a validated method for measuring
Introduction. A common phenomenon occurring as a result of reverse total shoulder arthroplasties (RSA) is scapular notching. While bone loss of the scapula may be quantified using radiographic techniques,[1] the
Introduction:. Cemented femoral components have been used in hip replacement surgery since its inception. For many patients this works well, but recent retrieval studies. 1–4. and more fundamental studies. 5, 6. have highlighted the issues of damage and