In a consecutive retrospective analysis of 190 patients treated with the
The
Recent researches indicate that both M1 and M2 macrophages play vital roles in tissue repair and foreign body reaction processes. In this study, we investigated the dynamics of M1 macrophages in the induced membrane using a mouse femur critical-sized bone defect model. The Masquelet method (M) and control (C) groups were established using C57BL/6J male mice (n=24). A 3mm-bone defect was created in the right femoral diaphysis followed by a Kirschner wire fixation, and a cement spacer was inserted into the defect in group M. In group C, the bone defect was left uninserted. Tissues around the defect were harvested at 1, 2, 4, and 6 weeks after surgery (n=3 in each group at each time point). Following Hematoxylin and eosin (HE) staining, immunohistochemical staining (IHC) was used to evaluate the CD68 expression as a marker of M1 macrophage. Iron staining was performed additionally to distinguish them from hemosiderin-phagocytosed macrophages. In group M, HE staining revealed a hematoma-like structure, and CD68-positive cells were observed between the spacer and fibroblast layer at 1 week. The number of CD68-positive cells decreased at 2 weeks, while they were observed around the new bone at 4 and 6 weeks. In group C, fibroblast infiltration and fewer CD68-positive cells were observed in the bone defect without hematoma-like structure until 2 weeks, and no CD68-positive cells were observed at 4 and 6 weeks. Iron staining showed hemosiderin deposition in the surrounding area of the new bone in both groups at 4 and 6 weeks. The location of hemosiderin deposition was different from that of macrophage aggregation. This study suggests that M1 macrophage aggregation is involved in the formation of induced membranes and osteogenesis and may be facilitated by the presence of spacers.
Previous clinical studies have shown the efficacy of a foreign body-induced membrane combined with bone autograft for the reconstruction of traumatologic or pathologic large bone defects or, bone non union. This membrane, rich in mesenchymal stromal cells (MSC), avoids bone autograft resorption and promotes consolidation by revascularisation of the bone and secretion of growth factors. Reconstruction requires two different surgical stages: firstly, insertion of a cement spacer in the defect, and secondly, removal of the spacer, preservation of the foreign body-induced membrane and filling of the cavity by bone autograft. The optimal time to perform the second surgical stage remains unclear. So, we aimed to correlate bone healing and, phenotype and function of cells isolated from the induced membrane, in patients whose second surgery was performed on average after 6 months (i.e. beyond the recommended time of one month). Cell phenotype was determined by flow cytometry and cell function by: alkaline Phosphatase enzyme activity, secretion of calcium and von Kossa staining. Second, using histological and immunohistochemistry studies, we aimed to determine the nature and function of induced membrane over time. Seven patients were included with their consent. Results showed Treated patients achieved in all cases bone union (except for one patient) and in in vitro and histology and immunohistochemistry gave some indications which need to be completed in the future. First, patient age seemed to be an indicator of bone union speed and recurrent infection, appeared to influence in vitro MSC osteogenic potential and induced membrane structure. Second, we reported, in bone repair situation, the commitment over time in osteogenic lineage of a surprising multipotent tissue (induced membrane) able of vascularisation/ osteogenesis/ chondrogenesis at a precocious time. Finally, best time to perform the second stage (one month) could be easily exceeded since bone union occurred even at very late times.
Treatment of large bone defects represents a great challenge for orthopedic surgeons. The main causes are congenital abnormalities, traumas, osteomyelitis and bone resection due to cancer. Each surgical method for bone reconstruction leads its own burden of complications. The gold standard is considered the autologous bone graft, either of cancellous or cortical origin, but due to graft resorption and a limitation for large defect, allograft techniques have been identified. In the bone defect, these include the placement of cadaver bone or cement spacer to create the ‘Biological Chamber’ to restore bone regeneration, according to the