Purpose.
INTRODUCTION. It has been reported that the rate of complications around the patella after Total Knee Arthroplasty(TKA) is 1–12%, and the patella dislocation is the most common one. PURPOSE. We will report a case that had the patella dislocation after TKA caused by
Introduction.
Purpose. Unicompartmental knee replacement (UKR) is an established, bone preserving surgical treatment option for medial compartment osteoarthritis (OA). Early revision rates appear consistently higher than those of total knee replacement (TKR) in many case series and consistently in national registry data. Failure with progression of OA in the lateral compartment has been attributed, in part, to surgical technical errors. In this study we used navigation assisted surgery to investigate the effects of improper sizing of the mobile bearing and
Introduction. Malpositioning of the tibial component is a common error in TKR. In theory, placement of the tibial tray could be improved by optimization of its design to more closely match anatomic features of the proximal tibia with the motion axis of the knee joint. However, the inherent variability of tibial anatomy and the size increments required for a non-custom implant system may lead to minimal benefit, despite the increased cost and size of inventory. This study was undertaken to test the hypotheses:
. 1. That correct placement of the tibial component is influenced by the design of the implant. 2. The operative experience of the surgeon influences the likelihood of correct placement of contemporary designs of tibial trays. Materials and Methods. CAD models were generated of all sizes of 7 widely used designs of tibial trays, including symmetric (4) and asymmetric (3) designs. Solid models of 10 tibias were selected from a large anatomic collection and verified to ensure that they encompassed the anatomic range of shapes and sizes of Caucasian tibias. Each computer model was resected perpendicular to the canal axis with a posterior slope of 5 degrees at a depth of 5 mm distal to the medial plateau. Fifteen joint surgeons and fourteen experienced trainees individually determined the ideal size and placement of each tray on each resected tibia, corresponding to a total of 2030 implantations. For each implantation we calculated: (i) the rotational alignment of the tray; (ii) its coverage of the resected bony surface, and (iii) the extent of any overhang of the tray beyond the cortical boundary. Differences in the parameters defining the implantations of the surgeons and trainees were evaluated statistically. Results. On average, the tibial tray was placed in 5.5 ± 3.1° of external rotation. The overall incidence of internal rotation was only 4.8%: 10.5% of trainee cases vs. 0.7% of surgeon cases (p < 0.0001). The incidence of internal rotation varied significantly with implant design, ranging from 1.7% to 6.2%. Bony coverage averaged 76.0 ± 4.5%, and was less than 70% in 8.6% of cases. Tibial coverage also varied significantly between designs (73.2 ± 4.3% to 79.2 ± 3.8%; p < .0001). Clinically significant cortical overhang (>1 mm), primarily in the posterior-lateral region, was present in 12.1% of cases, and varied by design, as expressed by the area of the tray overhanging the cortical boundary (min: 2.3 ± 6.7 mm. 2. ; max: 4.7 ± 7.9 mm. 2. ; p < .0001). The surgeons and the trainees also differed in terms of the incidence of sub-optimal tibial coverage (10.0% vs. 14.4%, p < 0.001), and cortical overhang (7.4% vs. 9.7%, p < 0.001). Discussion. 1.
In TKA, prosthetic femoral and tibial implants must be symmetrically placed and matched in the mechanical axis and the ligament gaps must be correctly balanced. The collateral ligaments are the key guide, as they arise from the epicondyles of the distal femur, are perpendicular to the AP axis of Whiteside, and are coincident with the transtibial axis of the proximal tibial surface. A perpendicular bisection of the transtibial axis creates the AP axis of the tibia which is coincident in space with the AP axis of Whiteside (Berger). Measured distal femoral resection targets including TEA, AP axis of Whiteside, and 3 degrees external to the posterior condylar axis works because the stout posterior cruciate ligament limits laxity in flexion, allowing for the anatomical variation of these landmarks to be accommodated. The Insall, Ranawat gap balancing methods work to balance the knee in flexion, often matching the results of a measured resection, but guaranteeing a symmetrically balanced flexion gap. Distal femoral internal rotation can result if the medial collateral is over-released, but experience has shown this not to be a problem if the gaps are well balanced. Tibial tray position must be placed coincident with the AP axis of the tibia, which also is coincident with Akagi's line (line from medial margin of patellar tendon to center of the posterior cruciate ligament). The surgeon can make a line from the AP axis of Whiteside to the anterior tibial which matches the AP tibial axis.
Stiffness postTotal Knee Replacement (TKR) is a common, complex and multifactorial problem. Many reports claim that component mal-rotation plays an important role in this problem. Internal mal-rotation of the tibial component is underestimated among surgeons when compared to femoral internal mal-rotation. We believe the internal mal- rotation of thetibial component can negatively affect the full extension of Knee. We performed an in-vivo study of the impact of tibial internal mal-rotation on knee extension in 31 cases. During TKR, once all bony cuts were completed and flexion/extension gaps balanced, we assessed the degree of knee extension using the trial component in the setting of normaltibial rotation and with varying degrees of internal rotation (13–33°, mean 21.2±4.6°). Intra-operative lateral knee X-ray was done to measure the degree of flexion contracture in both groups. We also compared the degree of flexion contracture between CR and PS spacers.Introduction
Method
Stiffness post Total Knee Replacement (TKR) is a common, complex and multifactorial problem. Many reports claim that component mal-rotation plays an important role in this problem. Internal mal-rotation of the tibial component is underestimated among surgeons when compared to femoral internal mal-rotation. We believe the internal mal-rotation of the tibial component can negatively affect the full extension of Knee. We performed an in-vivo study of the impact of tibial internal mal-rotation on knee extension in 31 cases. During TKR, once all bony cuts were completed and flexion/extension gaps balanced, we assessed the degree of knee extension using the trial component in the setting of normal tibial rotation and with varying degrees of internal rotation (13–33°, mean 21.2±4.6°). Intra-operative lateral knee X-ray was done to measure the degree of flexion contracture in both groups. We also compared the degree of flexion contracture between CR and PS spacers.Introduction
Method
Introduction. Post-operative clinical outcomes of TKA are dependent on a multitude of surgical and patient-specific factors.
Introduction. Tibial component
Purpose. Incidence of
Even though primary total knee arthroplasty involves resurfacing the joint with metal and plastic it is much more of a soft tissue operation than it is a bony procedure. The idea that altering the planned bony resection by a few degrees on either the tibial or femoral side of the joint might somehow eliminate the multifactorial pain complaints and reduced patient satisfaction seen in some 20% or more of cases in reported clinical series is clearly overly optimistic. Axial alignment is important, but no more so than the level of distal femoral resection, tibial and femoral rotation, tibial resection level and downslope and femoral sagittal plane alignment. The real problem is that errors in component positioning are common, rarely made one at a time, and are made more common by greater procedural complexity. No matter the resection method (let alone the resection target!) errors are commonly linked and iterative. For example: femoral
Total knee arthroplasty belongs today to one of the standard operation in orthopaedic surgery. During the last years the number of the total knee arthroplasty has dramatically increased. The prognosis for the future have shown also an increasing tendence. The Swedish Regiter Study and others showed that the results after total knee replacement not almost dependant on the design of the prothesis. More important are patient selection, operation technique and the postoperative therapy. The goals of modern knee replacement surgery are restoring mechanical alignment, preserving of the joint line, balancing ligament with a well balanced extension and flexion gap to reach maximum stability and movement. Bone resection is the simple part of a total knee operation. Ligament balancing with equal extention and flextion gap represents a major chalange for the surgeon which may consequantly affect the stability both in extention and flextion. Stability of total knee arthroplasty is dependant on correct and percise rotation of the femoral component. Femoral component
Stiffness after total knee arthroplasty (TKA) is a common problem occurring between 5% and 30% of patients. Stiffness is defined as limited range of motion (ROM) that affects activities of daily living. A recent International Consensus on definition of stiffness of the knee graded stiffness as mild, moderate or severe (90–100, 70–89, <70, respectively) or an extension deficit (5–10, 11–20, >20). Stiffness can be secondary to an osseous, soft tissue, or prosthetic block to motion. Heterotopic bone or retained posterior osteophytes, abundant fibrotic tissue, oversized components with tight flexion or extension gaps or component
Introduction:.
Purpose. Femoral component
Introduction. Rotational or axial alignment is an important concept in total knee surgery.
In years past, the most common reason for revision following knee replacement was polyethylene wear. A more recent study indicates that polyethylene wear is relatively uncommon as a cause for total knee revision counting for only 10% or fewer of revisions. The most common reason for revision currently is aseptic loosening followed closely by instability and infection. The time to revision was surprisingly short. In a recent series only 30% of knees were greater than 5 years from surgery at the time of revision. The most common time interval was less than 2 years. This is likely because of the higher incidence of infection and instability that occurs most commonly at a relatively early time frame. Evaluation of a painful total knee should take into account these findings. All total knees that are painful within 5 years of surgery should be assumed to be infected until proven otherwise. Therefore, virtually all should be aspirated for cell count, differential, and culture. Alpha-defensin is also available in cases in which a patient may have been on antibiotics within a month or less, as well as cases in which diagnosis is a challenge for some reason. Instability can be diagnosed with physical exam focusing on mid-flexion instability which can be usually determined with the patient seated and the knee in mid-flexion, with the foot flat on the floor at which point sagittal plane laxity can be discerned. This is also frequently associated with symptoms of giving way and recurring effusions and difficulty descending stairs. A new phenomenon of tibial de-bonding has been described, which can be a challenge to diagnose. Radiographs can appear normal when loosening occurs between the implant and the cement mantle. This seems to be more common with the use of higher viscosity cement. Obviously this is technique dependent since good results have been reported with the use of high viscosity cement. Component malposition can cause stiffness and pain and relatively good results have been reported by component revision when
Stiffness remains one of the most common, and challenging postoperative complications after TKA. Preoperative motion and diagnosis can influence postoperative motion, and careful patient counseling about expectations is important. Postoperative stiffness should be evaluated by ruling out infections, metal allergy, or too aggressive physical therapy. A careful physical and radiographic examination is required. Manipulation under anesthesia (MUA) in selected cases can be helpful. The best timing to perform MUA is between the 6th and 10th week postoperatively. Careful technique is required to minimise the risk of fracture or soft tissue injury. This requires complete paralysis! For more chronic stiffness, revision may be indicated if an etiology can be identified. An excessively thick patellar resurfacing, an overstuffed tibia insert, an oversized femoral component, or gross
Stiffness after TKR is a frustrating complication that has many possible causes. Though the definition of stiffness has changed over the years, most would agree that flexion > 75 degrees and a 15-degree lack of extension constitutes stiffness. This presentation will focus upon the potential causes of a stiff TKR, intra-operative tips, the post-operative evaluation and management, and the results of revision for a stiff TKR. The management of this potentially unsatisfying situation begins pre-operatively with guidance of the patient's expectations; it is well-known that pre-operative stiffness is strongly correlated with post-operative lack of motion. At the time of surgery, osteophytes must be removed and the components properly sised and aligned and rotated. Soft-tissue balancing must be attained in both the flexion/extension and varus/valgus planes. One must avoid overstuffing the tibio-femoral and/or patello-femoral compartments with an inadequate bone resection. Despite these surgical measures and adequate pain control and rehabilitation, certain patients will continue to frustrate our best efforts. These patients likely have a biological predisposition for formation of scar tissue. Other potential causes for the stiff TKR include complex regional pain syndrome or joint infection. Close followup of a patient's progress is crucial for the success in return of ROM. Should motion plateau early in the recovery phase, the patient should be evaluated for manipulation under anesthesia. At our institution, most manipulations are performed within 3 months post-operative under an epidural anesthetic; patients will stay overnight for continuous epidural pain relief and immediate aggressive PT. The results of re-operations for a stiff TKR are variable due to the multiple etiologies. A clear cause of stiffness such as component malposition,