The field of nanoparticle related research for the diagnosis and therapy of diseases evolves rapidly.
Tissue engineering and regenerative medicine (TERM) hold the promise to provide therapies for injured tendons despite the challenging cues of tendon niche and the lack of specific factors to guide regeneration. The emerging potential of
Tendons display poor intrinsic healing properties and are difficult to treat[1]. Prior in vitro studies[2] have shown that, by targeting the Activin A receptor with
A critical bone defect may be more frequently the consequence of a trauma, especially when a fracture occurs with wide exposure, but also of an infection, of a neoplasm or congenital deformities. This defect needs to be treated in order to restore the limb function. The treatments most commonly performed are represented by implantation of autologous or homologous bone, vascularized fibular grafting with autologous or use of external fixators; all these treatments are characterized by several limitations. Nowadays bone tissue engineering is looking forward new solutions:
In orthopedic surgery, implant infections are a serious issue and difficult to treat. The aim of this study was to use superparamagnetic nanoporous silica nanoparticles (MNPSNP) as candidates for directed drug delivery. Currently, short blood circulation half-life due to interactions with the host's immune system hinder nanoparticles in general from being clinically used. PEGylation is an approach to reduce these interactions and to enhance blood circulation time. The effect of PEGylation of the used . 68. Ga-labelled MNPSNP on the distribution and implant accumulation was examined by PET/CT imaging and gamma counting in an implant mouse model. Female Balb/c mice (n=24) received a
After the implantation of endoprotheses or osteosynthesis devices, implant-related infections are one of the major challenges. The surface of implants offers optimal conditions for the formation of a biofilm. Effective carrier systems for the delivery of adequate therapeutics would reduce the concentrations needed for successful treatment and improve cure rates. In cancer diagnosis and therapy,
Tendon injuries are a worldwide problem affecting several age groups and stem cell based therapies hold potential for tendon strategies guiding tendon regeneration. Tendons rely on mechano-sensing mechanisms that regulate homeostasis and influence regeneration. The mechanosensitive receptors available in cell membranes sense the external stimuli and initiate mechanotransduction processes. Activins are members of the TGF-β superfamily which participate in several tendon biological processes. It is envisioned that the activation of the activin receptor, trigger downstream Smad2/3 pathway thus regulating the transcription of tenogenic genes driving stem cell differentiation. In this work, we propose to target the Activin receptor type IIA (ActRIIA) in human adipose stem cells (hASCs), inducing hASCs commitment towards the tenogenic lineage. Since mechanotransduction can be remotely triggered through
Common tendon injuries impair healing, leading to debilitation and an increased re-rupture risk. The impact of oxygen-sensing pathways on repair mechanisms, vital in regulating inflammation and fibrosis, remains unclear despite their relevance in tendon pathologies. Recent studies show that pulsed electromagnetic field (PEMF) reduce inflammation in human tendon cells (hTDCs) and in hypoxia-induced inflammation. We investigated the hypoxia's impact (1% and 2% oxygen tension) using
For the treatment of ununited fractures, we developed
a system of delivering
Abstract. Objectives. Investigate
Significant challenges remain to accomplishing the development of fully functional tendon tissue substitutes that can lead to clinically effective and successful applications. Scaffolding materials must meet demanding requirements such i) mimic the hierarchical and anisotropically aligned structure of tendon tissues from the nano- up to the macroscale, ii) meet tendon mechanical requirements and non-linear biomechanical behaviour, iii) provide the necessary biophysical/biochemical cues and mechanical responsiveness to induce the tenogenic differentiation of stem cells and potentiating the effects of biochemical supplementation. On the other side, tenogenic differentiation of stem cells is still to be established, as well as the role of such cells (either naïve or pre-differentiated) in promoting tissue regeneration. We have recently found evidences that
We used interconnected porous calcium hydroxyapatite ceramic to bridge a rabbit ulnar defect. Two weeks after inducing the defect we percutaneously injected rabbit bone marrow-derived mesenchymal stromal cells labelled with ferumoxide. The contribution of an external
We undertook a study of the anti-tumour effects of hyperthermia, delivered via magnetite cationic liposomes (MCLs), on local tumours and lung metastases in a mouse model of osteosarcoma. MCLs were injected into subcutaneous osteosarcomas (LM8) and subjected to an alternating
Anterior shoulder instability results in labral and osseous glenoid injuries. With a large osseous defect, there is a risk of recurrent dislocation of the joint, and therefore the patient must undergo surgical correction. An MRI evaluation of the patient helps to assess the soft tissue injury. Currently, the volumetric three-dimensional (3D) reconstructed CT image is the standard for measuring glenoid bone loss and the glenoid index. However, it has the disadvantage of exposing the patient to radiation and additional expenses. This study aims to compare the values of the glenoid index using MRI and CT. The present study was a two-year cross-sectional study of patients with shoulder pain, trauma, and dislocation in a tertiary hospital in Karnataka. The sagittal proton density (PD) section of the glenoid and enface 3D reconstructed images of the scapula were used to calculate glenoid bone loss and the glenoid index. The baseline data were analyzed using descriptive statistics, and the Chi-square test was used to test the association of various complications with selected variables of interest.Introduction
Method
Hematopoietic stem cells (HSCs) reside within a specialised niche area in the bone marrow (BM). They have tremendous clinical relevance, although HSC expansion and culture ex vivo is not currently possible, reducing BM transplant success. This project expands a novel 3D MSC niche model developed in our lab to include HSCs. MSCs were loaded with green fluorescent
Our aim was to evaluate the indications for patients undergoing magnetic resonance imaging (MRI) of the knee prior to referral to an orthopaedic specialist, and ascertain whether these scans altered initial management. We retrospectively reviewed all referrals received by a single specialist knee surgeon over a 1-year period. Patient demographics, relevant history, examination findings and past surgical procedures were documented. Patients having undergone MRI prior to referral were identified and indications for the scans recorded. These were reviewed against The NHS guidelines for Primary Care Physicians to identify if the imaging performed was appropriate in each case.Aims and objectives
Materials and Method
Magnetic resonance imaging (MRI) is one of the most widely used investigations for knee pain as it provides detailed assessment of the bone and soft tissues. The aim of this study was to report the frequency of each diagnosis identified on MRI scans of the knee and explore the relationship between MRI results and onward treatment. Consecutive MRI reports from a large NHS trust performed in 2017 were included in this study. The hospital electronic system was consulted to identify whether a patient underwent x-ray prior to the MRI, attended an outpatient appointment or underwent surgery.Abstract
Objectives
Methods
The anatomy of the human body has been studied for centuries. Despite this, recent articles have announced the presence of a new knee ligament- the anterolateral ligament. It has been the subject of much discussion and media commentary. Previous anatomical studies indicate its presence, and describe its location, origin, course and insertion. Magnetic resonance imaging (MRI) is the best and most commonly used investigation to assess the ligamentous structure of the knee. To date, most MRI knee reports make no mention of the anterolateral ligament. The aim of this study was to assess for the presence of the anterolateral ligament using MRI, and to describe the structure if visualised. All right knee MRIs performed on a Siemens Magnetom Espree 1.5 Tesla scanner in Merlin Park Hospital over a 4 year period were retrospectively analysed. Patients born before 1970, or with reported abnormalities were excluded. The normal MRIs were then analysed by a consultant radiologist specialising in musculoskeletal imaging. Measurements on origin, insertion, course and length were noted.Background
Methods
Magnetic resonance imaging (MRI) continues to become more widely accessible as an investigation, with an increasing number of scans being performed in the outpatient setting for suspected shoulder pathology. We performed a retrospective review of all shoulder MRI scans performed in an orthopaedic outpatient setting in a district general hospital between October 2010 and October 2011. We also reviewed the medical notes for these patients. 75 MRI Shoulder scans were performed on 74 patients. In 5 cases (7%), no other form of imaging was performed prior to MRI scan. 11 patients (15%) had no provisional diagnosis included in the referral. The nature of referral, indication for MRI and subsequent management of these patients was also examined. Our findings may support the use of guidelines for requesting MRI scans of the shoulder in outpatients.
The biomechanical evaluation of tendon repair with collagen-based scaffolds in rat model is a common method to determine the functional outcome of the tested material. We introduced a magnetic resonance imaging (MRI) approach to verify the biomechanical test data. In present study different collagen scaffolds for tendon repair were examined. Two collagen test materials: based on bovine stabilized collagen, chemically cross-linked with oriented collagenous fibres (material 1) and based on porcine dermal extracellular matrix, with no cross-linking (material 2) were compared. The animal study was approved by the local review board. Surgery was performed on male Sprague-Dawley rats with a body weight of 400 ± 19 g. Each rat underwent a 5 mm transection of the right Achilles tendon. The M. plantaris tendon was removed. The remaining tendon ends were re-joined with a 5 mm scaffold of either the material 1 or 2. Each scaffold material was sutured into place with two single stiches (Vicryl 4–0, Ethicon) each end. A total of 16 rats (n= 8 each group) were observed for 28 days follow up. The animals were sacrificed and hind limbs were transected proximal to the knee joint. MRI was performed using a 7 Tesla scanner (BioSpec 70/30, Bruker). T2-weighted TurboRARE sequences with an in-plane resolution of 0.12 mm and a slice thickness of 0.7 mm were analysed. All soft and hard tissues were removed from the Achilles tendon-calcaneus-foot complex before biomechanical testing. Subsequently, the specimens were fixed in a materials testing machine (Z1.0, Zwick, Ulm, Germany) for tensile testing. All tendons were preloaded with 1 N and subsequently stretched at a rate of 1 mm/s until complete failure was observed. Non-operated tendons were used as a control (n=4). After 28 postoperative days, MRI demonstrated that four scaffolds (material 1: n=2, material 2: n=2) were slightly dislocated in the proximal part of hind limb. In total five failures of reconstruction could be detected in the tendon repairs (material 1: n=3, material 2: n=2). Tendons augmented with the bovine material 1 showed a maximum tensile load of 57.9 ± 17.9 N and tendons with porcine scaffold material 2 of 63.1 ± 19.5 N. The native tendons demonstrated only slightly higher loads of 76.6 ± 11.6 N. Maximum failure load of the tendon-scaffold construct in both groups did not differ significantly (p < 0.05). Stiffness of the tendons treated with the bovine scaffold (9.9 ± 3.6 N/mm) and with the porcine scaffold (10.7 ± 2.7 N/mm) showed no differences. Stiffness of the native healthy tendon of the contralateral site was significantly higher (20.2 ± 6.6 N/mm, p < 0.05). No differences in the mechanical properties between samples of both scaffold groups could be detected, regardless of whether the repaired tendon defect has failed or the scaffold has been dislocated. The results show that MRI is important as an auxiliary tool to verify the biomechanical outcome of tendon repair in animal models.