Meniscal injuries are very common cause of knee pain and resultant attendance to the orthopaedics or sports medicine clinics. The current protocol stands at clinical examination at first contact and establishing a diagnosis with clinical indicators like joint line tenderness, McMurray's, Apley's and weight-bearing test for meniscal pathology followed by MRI scan to confirm the diagnosis. Either surgical or conservative management follows this. We aim to assess clinical examination alone provide sufficient evidence for further management of meniscal injury and does a role of MRI scan exist to corroborate the findings. We retrospectively studied 88 patients attending the sports medicine clinic for the duration 2004–2007 examined by senior clinical assessor. We investigated the co-relation of the clinical and MRI findings to validate if there exists an actual clinical justification to use MRI scan in every patient We divided the data in further subsets of 57 patients in whom both clinical examination and MRI scan were performed and were validated by arthroscopy. The data obtained was analysed for parameters of accuracy, sensitivity, specificity, positive predictive value [PPV] and negative predictive value [NPV]Introduction
Methodology
The opposable thumb is one of the defining characteristics of human anatomy and is involved in most activities of daily life. Lack of optimal thumb motion results in pain, weakness, and decrease in quality of life. First carpometacarpal (CMC1) osteoarthritis (OA) is one of the most common sites of OA. Current clinical diagnosis and monitoring of CMC1 OA disease are primarily aided by X-ray radiography; however, many studies have reported discrepancies between radiographic evidence of CMC1 OA and patient-related outcomes of pain and disability. Radiographs lack soft-tissue contrast and are insufficient for the detection of early characteristics of OA such as synovitis, which play a key role in CMC OA disease progression. Magnetic resonance imaging (MRI) and two-dimensional ultrasound (2D-US) are alternative options that are excellent for imaging soft tissue pathology. However, MRI has high operating costs and long wait-times, while 2D-US is highly operator dependent and provides 2D images of 3D anatomical structures. Three-dimensional ultrasound imaging may be an option to address the clinical need for a rapid and safe point of care imaging device. The purpose of this research project is to validate the use of mechanically translated 3D-US in CMC OA patients to assess the measurement capabilities of the device in a clinically diverse population in comparison to MRI. Four CMC1-OA patients were scanned using the 3D-US device, which was attached to a Canon Aplio i700 US machine with a 14L5 linear transducer with a 10MHz operating frequency and 58mm. Complimentary
Recently, several preliminary reports have been issued on the application of computer assistance to bone tumour surgery. Surgical navigation systems can apply three-dimensional images such as CT and
Purpose. To develop a low complexity highly-automated multimodal approach to segment vertebral structure and quantify mixed osteolytic/osteoblastic metastases in the rat spine using a combination of CT and
Introduction. Patient specific instrumentation (PSI) generates customized guides from an MRI- or CT-based preoperative plan for use in total knee arthroplasty (TKA). PSI software executes the preoperative planning process. Several manufacturers have developed proprietary PSI software for preoperative planning. It is possible that each proprietary software has a unique preoperative planning process, which may lead to variation in preoperative plans among manufactures and thus variation in the overall PSI technology. The purpose of this study was to determine whether different PSI software generate similar preoperative plans when applied to a single implant system and given identical
The use of 3D imaging methodologies in orthopaedics has allowed the introduction of new technologies, such as the design of patient-specific implants or surgical instrumentation. This has introduced the need for high accuracy, in addition to a correct diagnosis. Until recently, little was known about the accuracy of
INTRODUCTION. Over the last twenty years, image-guided interventions have been greatly expanded by the advances in medical imaging and computing power. A key step for any image-guided intervention is to find the image-to-patient transformation matrix, which is the transformation matrix between the preoperative 3D model of patient anatomy and the real position of the patient in the operating room. In this work, we propose a robust registration algorithm to match ultrasound (US) images with preoperative Magnetic Resonance (MR) images of the Humerus. MATERIALS AND METHODS. The fusion of preoperative
Knee biomechanics after total knee arthroplasty (TKA) has received more attention in recent years. One critical biomechanical aspect involved in the workflow of present TKA strategies is the intraoperative optimisation of ligament balancing. Ligament balancing is usually performed with passive flexion-extension in unloaded situations. Medial and lateral ligaments strains after TKA differ in loaded flexion compared to unloaded passive flexion making the passive unloaded ligament balancing for TKA questionable. To address this problem, the development of detailed and specific knowledge on the biomechanical behaviour of loaded knee structures is essential. Stress MRI techniques were introduced in previous studies to evaluate loaded joint kinematics. Previous studies captured the knee movement either in atypical loading supine positions, or in upright positions with help of inclined supporting backrests being insufficient for movement capture under full body weight-bearing conditions. In this work, we proposed a combined
Knee biomechanics after total knee arthroplasty (TKA) has received more attention in recent years. One critical biomechanical aspect involved in the workflow of present TKA strategies is the intraoperative optimisation of ligament balancing. Ligament balancing is usually performed with passive flexion-extension in unloaded situations. Medial and lateral ligaments strains after TKA differ in loaded flexion compared to unloaded passive flexion making the passive unloaded ligament balancing for TKA questionable. To address this problem, the development of detailed and specific knowledge on the biomechanical behavior of loaded knee structures is essential. Stress MRI techniques were introduced in previous studies to evaluate loaded joint kinematics. Previous studies captured the knee movement either in atypical loading supine positions, or in upright positions with help of inclined supporting backrests being insufficient for movement capture under full body weight-bearing conditions. In this work, we proposed a combined
CT and MRI scans are complementary preoperative imaging investigations for planning complex musculoskeletal bone tumours resection and reconstruction. Conventionally, tumour surgeons analyse two-dimensional (2-D) imaging information, mentally integrate and formulate a three-dimensional (3-D) surgical plan. Difficulties are anticipated with increase in case complexity and distorted surgical anatomy. Incorporating computer technology to aid in this surgical planning and executing the intended resection may improve precision. Although computer-assisted surgery has been widely used in cranial biopsies and tumour resection, only small case series using CT-based navigation are recently reported in the field of musculoskeletal tumor surgery. We investigated the results of CT/MRI image fusion for Computer Assisted Tumor Surgery (CATS) with the help of a navigation system. We studied 21 patients with 22 musculoskeletal tumours who underwent CATS from March 2006 to July 2009. A commercially available CT-based spine navigation system (Stryker Navigation; CT spine) was used. Of the 22 patients, 10 were males, 11 were females, and the mean age was 32 years at the time of surgery (range, 6–80 years). Five tumours were located in the pelvis, seven sacrum, eight femurs, and two tibia. The primary diagnosis was primary bone tumours in 16 (3 benign, 13 sarcoma) and metastatic carcinoma in four. The minimum follow-up was 17 months (average, 35.5 months; range, 17–52 months). Preoperative CT and MRI scan of each patient were performed. Axial CT slices of 0.0625mm or 1.25mm thickness and various sequences of
High tibial osteotomy (HTO) is a common surgical procedure for treatment of patients with varus mal-alignment. The success rate of the procedure is strongly dependent on the quality of the correction. Thus, an accurate pre-planning is essential to ensure that the precise amount of alignment is achieved postoperatively. The purpose of this study was to simulate the HTO in a patient with varus deformity in order to explore the interactions between the wedge angle, the mechanical axis, and the knee joint configuration. A finite element model of the knee joint of a patient with varus deformity was developed. The geometry was obtained using the whole limb CT scans the knee
An 83-year-old woman presented with acute weakness in her right hand and wrist extensors and swelling in the proximal right forearm. Nerve conduction studies confirmed compression of posterior introsseous nerve at the level of proximal forearm.
Objectives. Delayed gadolinium enhanced MRI of cartilage (dGEMRIC) is a novel MRI-based technique with intravenous contrast agent that allows an objective quantification of biochemical cartilage properties. It enables a ‘monitoring' of the loss of cartilage glycosaminoglycan content which ultimately leads to osteoarthritis. Data regarding the longitudinal change of cartilage property after joint preserving hip surgery is sparse. We asked (1) if and how the dGEMRIC-index changes in patients undergoing open/arthroscopic treatment of femoroacetabular impingement (FAI) one year postoperatively compared to a control group of patients with non-operative treatment; (2) and if a change correlates with the clinical short term outcome. Methods. IRB-approved prospective comparative longitudinal study of two groups involving a total of 61 hips in 55 symptomatic patients with FAI. The ‘operative' group consisted of patients that underwent open/arthroscopic treatment of their pathomorphology. The ‘non-operative' group consisted of conservatively treated patients. Groups were comparable for preoperative radiographic arthritis (Tönnis score), preoperative HOOS- and WOMAC-scores and baseline dGEMRIC indices. All patients eligible for evaluation had preoperative radiographs and dGEMRIC scans at baseline and repeated dGEMRIC scans using the same scanner and protocol. (1) dGEMRIC indices of femoral and acetabular cartilage were assessed separately on the initial and follow-up dGEMRIC scans. Radial images were reformatted from a 3D T1 map for measurements. Regions of interest were placed manually peripherally and centrally within the cartilage based on anatomical landmarks at the 12 ‘hour' position of the clcok-face with the help of radial high-resolution PD-weighted
Introduction:. Pigmented Villonodular Synovitis (PVNS) is a rare inflammatory disorder of the synovium, bursa and tendon sheath. The objective of this study was to evaluate the long-term outcomes and morbidity associated with operative management of PVNS of the hand. Methods:. Histological databases were retrospectively interrogated. All patients between 2003–2008 with confirmed PVNS of the hand were included in the study. Results:. 15 patients were identified with PVNS of the hand. 10/15 (67%) patients had growths over the digits and 4/15 (26%) involved the thumb with two of these involving the IPJ. 6/10 (60%) of cases with digital involvement arose from a joint (4 PIPJ & 2 MCPJ). Nodular growth was the most common cause for referral. Average length of symptoms prior to presentation was 2.4 years (6 months–5 years). 6/15(40%) of cases had pre-operative MR scans with 100% radiological and histological correlation. Marginal excision was the operative intervention of choice. There was no evidence of bony destruction in any cases. 4/15(26.7%) patients developed a temporary neurapraxia. 4/15 (26.7%) had recurrence at 5 years of which 3/10 had amputations p=0.008. One amputation was due to digital artery injury, two due to recurrence. All patients reported stiffness post-operatively. No functional deficit was recorded. Conclusions:.
Introduction. Recently ventral plating implants made of carbon/PEEK composite material have been developed with apparently superior material properties in terms of implant fatigue and imaging suitability. In this study we assessed the outcome of the first clinical application of this new implant. Methods. Retrospective, single-center case series of 16 consecutive patients between 2011 and 2013 undergoing ventral stabilization surgery with a new carbon plating system (see figure 1). We collected data in terms of safety of the procedure (screw positioning, blood loss, operation time), quality and reliability of the implant (revisions, dislocations, screw loosening, fusion, adjacent segment degeneration), clinical outcome and biological tolerance (cervical pain / discomfort, dysphagia). Results. All patients were available for clinical and radiological follow up. Mean surgery time was 128 minutes, in 11 cases one in 5 cases 2 segments were treated. The clinical findings and patient's satisfaction were good in 14 and fair in two cases. All patients who completed the 6 months control had a radiographically confirmed interbody fusion; no implant loosening or failure and no infections were observed. (see figure 2). There was one implant related complication (dysphagia due to malpositioning of the plate which was removed 4 days after implant insertion) and one complication related to the approach (Horner's syndrome). Conclusion. In this retrospective study of 16 patients we found that the use of a carbon-composite plating system lead to results comparable to the “gold standard” metal plates in terms of safety / clinical outcome and reliability of the implant. There was one revision due to dysphagia. The
Introduction. An equal knee joint height during flexion and extension is of critical importance in optimizing soft-tissue balancing following total knee arthroplasty (TKA). However, there is a paucity of data regarding the in-vivo knee joint height behavior. This study evaluated in-vivo heights and anterior-posterior (AP) translations of the medial and lateral femoral condyles before and after a cruciate-retaining (CR)-TKA using two flexion axes: surgical transepicondylar axis (sTEA) and geometric center axis (GCA). Methods. Eleven patient with advanced medial knee osteoarthritis (age: 51–73 years) who scheduled for a CR TKA and 9 knees from 8 healthy subjects (age: 23–49 years) were recruited. 3D models of the tibia and femur were created from their
Background. Surgeons are waiting for a hassle free, time saving, precise and accurate guide for hip arthroplasty. Industry are waiting for instruments to reduce manufacturing costs associated with washing, assembling, sterilization and transportation. Patient specific / custom made surgical guides may deliver these goals but current systems have had limited assessments. We comprehensively assessed a new guiding system for the acetabular component of hip replacement, “Bullseye”. Methods. Planning. We used either Computer Tomography (CT) (n=22) or Magnetic Resonance (MR) (n=6) imaging to plan the position of acetabular components into 28 acetabulums of cadavers (n=12) and dry bone models (n=16). 10 of the dry bone models had complex deformities (crowe 4 hip dysplasia or Paprosky 3A defects). Surgical positioning. Patient specific “Bullseye” guides were manufactured using 3D printing and standard instruments were used to ream the acetabulum, guided by Bullseye, and position cup components. Post surgery. The pelvises underwent CT scanning after implantation of acetabular cups. 3D software measured the “radiographic” (as opposed to operative or anatomic) cup inclination and version angles using the anterior pelvic plane as a reference. Achieved position was compared to the plan. Statistics. We used Bland Altman plots to quantify the strength of the agreement between the planned and achieved cup orientations in terms of fixed bias, correlation coefficient and 2 standard deviation limits of agreement. Results. Measurement of the cup position angles with 3D CT after implantation with the Bullseye hip instruments showed a median (Interquartile range) difference in degrees between planned and achieved position of 2.5 (1–6) for inclination and 8 (3–10) for version. The use of CT or
Introduction. Advancements in knee surgery require a profound understanding of knee mechanics. However, there are seemingly contradicting reports regarding certain aspects of normal knee function, such as the location of the pivot of internal-external rotation in the transverse plane. Among others, it has been suggested to be located close to the knee center or in the medial compartment. We hypothesized that this apparent contradiction is a result of different studied knee motions and that it can be explained by the underlying envelopes of motion. The study objective was to characterize normal knee behavior in-vitro with an emphasis on pivot location. Methods. Thirty-four cadaveric human knee specimens (Age: 61±8 years, BMI: 25±7) underwent CT and
Background. Resection of sacral chordoma remains challenging because complex anatomy and important nerves in the sacrum make it difficult to achieve wide surgical margins. Computer-assisted navigation has shown promise in aiding in optimal preoperative planning and in providing accurate and precise tumour resection during surgery. Purpose. To evaluate the benefit of using computer-assisted navigation in precise resection of sacral chordoma. Methods. From 2007 to 2012, we performed sacral chordoma resections with computer-assisted navigation in 19 consecutive patients, of which 15 were primary and 4 were recurrent. There were 11 male and 8 female patients with a mean age of 53.5 years (range, 36–81 years). Eighteen lesions had their upper extent above S3 and the remaining one was below S3. Reconstructed three-dimensional images were used to plan the bone resection before operation. Five patients were treated with CT-based navigation system. 14 cases got ISO-C scanned during operation and CT and
Introduction. The goal of tibial tray placement in total knee arthroplasty (TKA) is to maximize tibial surface coverage while maintaining proper rotation. Maximizing tibial surface coverage without component overhang reduces the risk of tibial subsidence. Proper tibial rotation avoids excess risk of patellar maltracking, knee instability, inappropriate tibial loading, and ligament imbalance. Different tibial tray designs offer varying potential in optimizing the relationship between tibial surface coverage and rotation. Patient specific instrumentation (PSI) generates customized guides from an MRI- or CT-based preoperative plan for use in TKA. The purpose of the present study was to utilize MRI information, obtained as part of the PSI planning process, to determine, for anatomic, symmetric, and asymmetric tibial tray designs, (1) which tibial tray design achieves maximum coverage, (2) the impact of maximizing coverage on rotation, and (3) the impact of establishing neutral rotation on coverage. Methods. In this prospective comparative study,