Objectives. Salubrinal is a synthetic agent that elevates phosphorylation
of eukaryotic translation initiation factor 2 alpha (eIF2α) and
alleviates stress to the endoplasmic reticulum. Previously, we reported
that in chondrocytes, Salubrinal attenuates expression and activity
of matrix metalloproteinase 13 (MMP13) through downregulating nuclear
factor kappa B (NFκB) signalling. We herein examine whether Salubrinal
prevents the degradation of articular cartilage in a mouse model
of osteoarthritis (OA). Methods. OA was surgically induced in the left knee of female mice. Animal
groups included age-matched sham control, OA placebo, and OA treated
with Salubrinal or Guanabenz. Three weeks after the induction of
OA, immunoblotting was performed for NFκB p65 and p-NFκB p65. At
three and six weeks, the femora and tibiae were isolated and the sagittal
sections were stained with Safranin O. Results. Salubrinal suppressed the progression of OA by downregulating
p-NFκB p65 and
Adolescent idiopathic scoliosis (AIS) is a poorly understood progressive curvature of the spine. The 3-dimmensionnal spinal deformation brings abnormal biomechanical stresses on the load-bearing organs. We have recently reported for the first time the presence of facet joint cartilage degeneration comparable to age-related osteoarthritis in scoliotic adolescents. To better understand the degenerative mechanisms and explore new therapeutic possibilities, we focused on Toll-like receptors (TLRs) which are germline-encoded pattern recognition receptors that recognize pathogens and endogenous proteins such as fragmented extracellular matrix components (alarmins) present in intervertebral discs (IVD) and articular cartilage. Once activated, they regulate the production pro-inflammatory cytokines, proteases and neurotrophins which can lead to matrix catabolism, inflammation and potentially pain. These mechanisms have however not been studied in the context of AIS or facet joints. Facet joints of AIS patients undergoing corrective surgery and of cadaveric donors (non-scoliotic) were collected from consenting patients or organ donors with ethical approval. Cartilage biopsies and chondrocytes were isolated using 3mm biopsy punches and collagenase type 2 digestion respectively. qPCR was used to assess gene expression of the degenerative factors (MMP3,
Osteoarthritis (OA) is a chronic degenerative joint disorder that affects millions of people. There are currently no therapies that reverse or repair cartilage degradation in OA patients. Link N (DHLSDNYTLDHDRAIH) is a naturally occurring peptide that has been shown to increase both collagen and proteoglycan synthesis in chondrocytes and intervertebral disc cells [1,2]. Recent evidence indicates that Link N activates Smad1/5 signaling in cultured rabbit IVD cells presumably by interacting with the bone morphogenetic protein (BMP) type II receptor [3], however, whether a similar mechanism exists in chondrocytes remains unknown. In this study we determined whether Link N can stimulate matrix production and reverse degradation of human OA cartilage under inflammatory conditions. OA cartilage was obtained from donors undergoing total knee arthroplasty with informed consent. OA cartilage/bone explants and OA chondrocytes were prepared from each donor. Cells were prepared in alginate beads (2×106 cells/mL) for gene expression analysis using qPCR. Cells and cartilage explants were exposed to IL-1β (10ng/ml), human Link N (hLN) (1μg/ml) or co-incubated with IL-1β+hLN for 7 and 21 days, respectively. Media was supplemented every three days. Cartilage/bone explants were measured for total glycosaminoglycan (GAG) content (retained and released) using the dimethylmethylene blue (DMMB) assay. Western blotting was performed to determine aggrecan and collagen expression in cartilage tissue. To determine NFκB activation, Western blotting was performed for detection of P-p65 in chondrocytes cultured in 2D following 10 min exposure of IL-1β in the presence of 10, 100, or 1000 ng/mL hLN. Link N significantly decreased in a dose-dependent manner IL-1β-induced NFκB activation in chondrocytes. Gene expression profiling of matrix proteins indicated that there was a trend towards increased aggrecan and decreased collagen type I expression following hLN and IL-1β co-incubation. HLN significantly decreased the IL-1β-induced expression of catabolic enzymes MMP3 and
The superficial zone (SFZ) of articular cartilage has unique structural and biomechanical features, and is important for joint long-term function. Previous studies have shown that TGF-β/Alk5 signaling upregulating PRG4 expression maintains articular cartilage homeostasis. However, the exact role and molecular mechanism of TGF-β signaling in SFZ of articular cartilage homeostasis are still lacking. In this study, a combination of in vitro and in vivo approaches were used to elucidate the role of Alk5 signaling in maintaining the SFZ of articular cartilage and preventing osteoarthritis initiation. Mice with inducible cartilage SFZ-specific deletion of Alk5 were generated to assess the role of Alk5 in OA development. Alterations in cartilage structure were evaluated histologically. The chondrocyte apoptosis and cell cycle were detected by TUNEL and Edu staining, respectively. Isolation, culture and treatment of SFZ cells, the expressions of genes associated with articular cartilage homeostasis and TGF-β signaling were analyzed by qRT-PCR. The effects of TGF-β/Alk5 signaling on proliferation and differentiation of SFZ cells were explored by cells count and alcian blue staining. In addition, SFZ cells isolated from C57 mice were cultured in presence of TGF-β1 or SB505124 for 7 days and transplanted subcutaneously in athymic mice. Postnatal cartilage SFZ-specific deletion of Alk5 induced an OA-like phenotype with degradation of articular cartilage, synovial hyperplasia as well as enhanced chondrocyte apoptosis, overproduction of catabolic factors, and decreased expressions of anabolic factors in chondrocytes. qRT-PCR and IHC results confirmed that Alk5 gene was effectively deleted in articular cartilage SFZ cells. Next, the PRG4-positive cells in articular cartilage SFZ were significantly decreased in Alk5 cKO mice compared with those in Cre-negative control mice. The mRNA expression of Aggrecan and Col2 were decreased, meanwhile, expression of