Advertisement for orthosearch.org.uk
Results 1 - 8 of 8
Results per page:
Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_15 | Pages 59 - 59
1 Dec 2021
Chisari E Cho J Wouthuyzen M Friedrich AW Parvizi J
Full Access

Aim. A growing number of recent investigations on the human genome, gut microbiome, and proteomics suggests that the loss of mucosal barrier function, particularly in the gastrointestinal tract, may substantially affect antigen trafficking, ultimately influencing the close bidirectional interaction between the gut microbiome and the immune system. This cross-talk is highly influential in shaping the host immune system function and ultimately shifting genetic predisposition to clinical outcome. Therefore, we hypothesized that a similar interaction could affect the occurrence of acute and chronic periprosthetic joint infections (PJI). Method. Multiple biomarkers of gut barrier disruption were tested in parallel in plasma samples collected as part of a prospective cohort study of patients undergoing revision arthroplasty for aseptic or PJI (As defined by the 2018 ICM criteria). All blood samples were collected before any antibiotic was administered. Samples were tested for Zonulin, soluble CD14 (sCD14), and lipopolysaccharide (LPS) using commercially available enzyme-linked immunosorbent assays. Statistical analysis consisted of descriptive statistics and ANOVA. Results. A total of 96 patients were consented and included in the study. 32 were classified as PJI (23 chronic and 9 acute), and 64 as aseptic. Both Zonulin and LPS were found to be increased in the acute PJI group 8.448 ± 7.726 ng/mL and 4.106 ± 4.260 u/mL, compared to chronic PJI (p<0.001) and aseptic revisions (p=0.025). sCD14 was found to be increased in both chronic (0.463 ± 0.168 ug/mL) and acute PJI (0.463 ± 0.389 ug/mL) compared to aseptic revisions (p<0.001). Conclusions. This prospective ongoing study reveals a possible link between gut permeability and the ‘gut-immune-joint axis’ in PJI. If this association continues to be born out with larger cohort recruitment, it would have a massive implication in managing patients with PJI. In addition to the administration of antimicrobials, patients with PJI and other orthopedic infections may require gastrointestinal modulators such as pro and prebiotics


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_6 | Pages 104 - 104
1 Jul 2020
Goodman S Lin T Pajarinen J Yao Z
Full Access

Mesenchymal stem cells (MSCs) are capable of forming bone, cartilage and other mesenchymal tissues but are also important modulators of innate and adaptive immune responses. We have capitalized on these important functions to mitigate adverse responses when bone is exposed to pathogen-associated molecular patterns (PAMPs), damage-associated molecular patterns (DAMPs), or prolonged pro-inflammatory cytokines. Our goal was to optimize osteogenesis and mitigate persistent undesired inflammation by: 1. preconditioning MSCs by short term exposure to lipopolysaccharide (LPS) and Tumor Necrosis Factor alpha (TNF-α), 2. genetic modification of MSCs to overexpress Interleukin 4 (IL-4) either constitutively, or as NFκB-responsive IL-4 over-expression cells, and 3. training the MSCs (innate immune memory) by repeated stimulation with LPS. In the first experiment, bone marrow MSCs and macrophages were isolated from femurs and tibias of C57BL/6 mice. MSCs (1×104 cells) were seeded in 24-well transwell plates in the bottom chamber with MSC growth medium. MSCs were treated with 20 ng/ml TNF-α and 1–20 μg/ml LPS for three days. Primary macrophages (2 × 103 cells) were seeded to the insert of a separate transwell plate and polarized into the M1 phenotype. At day four, MSCs and macrophages were washed and the inserts with M1 macrophages were moved to the plates containing preconditioned MSCs at the bottom of the well. Co-culture was carried out in MSC growth medium for 24h. In the second experiment, bone marrow derived macrophages and MSCs were isolated from femora and tibiae of Balb/c male mice. 5×104 macrophages and 1×104 MSCs were seeded in the bottom well of the 24-well transwell plate. The upper chambers were seeded with unmodified MSCs, MSCs preconditioned with 20 ng/ml TNF-α and 20 mg/ml LPS for 3 days, NFκB-IL4 secreting MSCs (all 5×104 cells), or controls without MSCs. Co-culture was carried out in mixed osteogenic-macrophage media with clinically relevant polyethylene or titanium alloy particles. In the third experiment, bone marrow MSCs and macrophages were collected from femurs and tibias of C57BL/6 male mice. The MSCs were stimulated by LPS, washed out for five days, and re-stimulated by LPS in co-culture with macrophages. First, preconditioned MSCs enhanced anti-inflammatory M2 macrophage (Arginase 1 and CD206) expression, decreased pro-inflammatory M1 macrophage (TNF-α/IL-1Ra ratio) expression, and increased osteogenic markers (alkaline phosphatase expression and matrix mineralization) in co-culture. Second, NFκB-IL4 secreting MSCs decreased pro-inflammatory M1 (TNF-α), increased anti-inflammatory M2 (Arg1, IL-1ra) expression, and enhanced the expression of osteogenic factors Runx2 and alkaline phosphatase, in the presence of particles, compared to other groups. Third, LPS-trained MSCs increased anti-inflammatory (Arginase1 and CD206), and decreased the proinflammatory (TNF-α, IL1b, iNOS, and IL6) marker expression in MSC/macrophage co-culture. Transforming MSCs via the techniques of preconditioning, genetic modification, or training (innate immune memory) can modulate/convert a potentially injurious microenvironment to an anti-inflammatory pro-reconstructive milieu. These effects are highly relevant for bone healing in the presence of adverse stimuli. These concepts using transformed MSCs could also be extended to other organ systems subjected to potentially damaging agents


INTRODUCTION. Loosening is concerned to be the major cause of revision in the artificial prosthesis. Wear debris of UHMWPE dispersed into the implant-bone interface are phagocytosed by macrophages releasing inflammatory cytokines such as TNF-α which leads to osteolysis and loosening eventually. It is known that the size and structure [1] as well as attached substances on particle surface such as endotoxin could affect the amount of cytokines released [2]. An in vivo study using rat femurs showed that the presence of polyethylene particles around implants could result in accumulation of lipopolysaccharide (LPS) from exogenous sources that may affect bone remodeling around implants [3]. It is also reported that LPS is transported throughout the body with lipoproteins or LPS binding proteins [4] and Circulating LPS may originate from local sites of infection or via bloodborne bacteria [5]. In this study, we evaluated the effects of LPS that attached to UHMWPE particle surface by measuring TNF-α released from macrophages. MATERIALS AND METHODS. We cultured mouse macrophage cell line RAW 264 with spherical UHMWPE particles (8.7µm and 23µm diameter in average, Mitsui chemicals Co., LTD.) and LDPE particles (3.6µm and 5.8µm diameter in average, Sumitomo Seika Chemicals Co., LTD.) using the Inverse Culture Method for 24 hours before estimating the TNF-α generation by TNF- ALPHA QUANTIKINE ELISA KIT (R&D). Spherical UHMWPE particles (10µm diameter in average, Mitsui chemicals Co., LTD.) with E.coli original LPS (Enzo Life Sciences) attached to them were incubated with cells to see the effects of LPS on the bio-reactivity tests. REAULTS AND DISCUSSIONS. Figure 1 shows the TNF-α concentration of different materials and sizes of polyethylene particles. TNF-α concentration was shown to be dose-dependent to the total surface area of particles added regardless of the materials and sizes. Figure 2 shows TNF-α concentration relative to the particle surface area inverse and non-inverse cultured. No significant difference was observed in TNF-α concentration between particles that were attached to LPS and virgin particles in non-inverse culture method. However, when cultured inversely, the effect of LPS became more significant in higher surface area range in which dose-dependent relationship was not observed. The results suggest that saturation may occur caused by size exclusion, production limitation, etc. However, LPS attached to particle surface may alter the production limitation due to increased presence of particles around macrophages. For any figures or tables, please contact the authors directly


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_4 | Pages 5 - 5
1 Jan 2016
Li Z Zhou Y Zhang Y Luo G Yang X Li C Liao W Sheng P
Full Access

Implant-related infection (IRI) is closely related to the local immunity of peri-implant tissues. The generation of reactive oxygen species (ROS) in activated macrophages plays a prominent role in the innate immune response. In previous studies, we indicated that implant wear particles promote endotoxin tolerance by decreasing the release of proinflammatory cytokines. However, it is unclear whether ROS are involved in the damage of the local immunity of peri-implant tissues. In the present study, we assessed the mechanism of local immunosuppression using titanium (Ti) particles and/or lipopolysaccharide (LPS) to stimulate RAW 264.7 cells. The results indicate that the Ti particles induced the generation of a moderate amount of ROS through nicotinamide adenine dinucleotide phosphate oxidase-1 (NOX-1), but not through catalase. Pre-exposure to Ti particles inhibited ROS generation and extracellular regulated protein kinase (ERK) activation in LPS-stimulated macrophages. These findings indicate that chronic stimulation by Ti particles may lead to a state of oxidative stress and persistent inflammation, which may result in the attenuation of the immune response of macrophages to bacterial components such as LPS. Eventually, immunosuppression develops in peri-implant tissues, which may be a risk factor for IRI


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_9 | Pages 123 - 123
1 May 2016
Paulus A Brosseder S Schroeder C Jansson V Grupp T Schwiesau J Utzschneider S
Full Access

Introduction. The complex cellular mechanisms of the aseptic loosening of total joint arthroplasties still remain not completely understood in detail. Especially the role of adherent endotoxins in this process remains unclear, as lipopolysaccharides (LPS) are known to be very potent modulators of the cell response on wear particle debris. Contributing factors on the LPS affinity of used orthopedic biomaterials as their surface roughness have to be investigated. The aim of this study was to evaluate the affinity of LPS on the surface roughness of different biomaterials in vitro. The hypothesis of the study was that rough surfaces bind more LPS than smooth surfaces. Materials and methods. Cubes with a side length from ultra-high-molecular-weight-polyethylene (UHMWPE), crosslinked polytethylene (XPE), carbon fibre reinforced poly-ether-ether-ketone (CFR-PEEK), titanium, titanium alloy, Polymethyl methacrylate (PMMA), implant steel (CoCr) and instrument steel (BC) were produced (figure 1). Cubes of each material have been produced with a rough and a smooth surface. Before the testings, all cubes and used materials were treated with E-Toxa-Clean(®) to eliminate pre-existing LPS on the used surfaces. The cubes were then fixed on the cap of a glass that was filled with a LPS solution with a concentration of 5 IE/ml. After 30 minutes the cube was removed and the LPS concentration in the supernatant was measured. The endotoxin content of each sample was evaluated by a Limulus Amoebocyte Lysate (LAL) - Test (Lonza, Verviers, Belgium). The detection level of endotoxin was set at < 0.005 EU/ml diluted 1/10. Results. All tested rough biomaterials showed a higher affinity to LPS compared to the smooth surfaces. Conclusion. The initial hypothesis could be confirmed. The results prove that rough and therefore larger surfaces bind more LPS than smooth surfaces. A rough surfaces correlates with a larger total surface of the used biomaterial. In this context protheses should be avoided that show a large rough surface, as these endoprostheses might bind more LPS and trigger an enhanced inflammatory reaction that results in an early aseptic loosening


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_3 | Pages 67 - 67
1 Feb 2017
Muratoglu O Chen W Suhardi V Bichara D
Full Access

Introduction. Periprosthetic joint infection (PJI) and particle-induced osteolysis are closely related to peri-implant local immunity and macrophage function. We previously demonstrated that titanium particles attenuate the immune response of macrophages caused by chronic inflammation [1]. In a separate study, we have determined that UHMWPE wear particles containing vitamin E (VE) induce less osteolysis compared to HXL UHMWPE wear particles in a murine calvarium model [2]. For this study we hypothesized that macrophages exposed to HXL UHMWPE particles containing VE would better maintain their ability to respond to S. aureus compared to HXL UHMWPE without VE. Methods. A gamma-sterilized, HXL UHMWPE tibial bearing containing VE (E1, Biomet, “VE-PE”) and 100kGy irradiated and melted UHMWPE (“CISM 100”) were cryomilled to particles by Bioengineering Solutions (Oak Park, IL). In the first in vitro study, RAW 264.7 mouse macrophages were exposed (inverted co-culture) to either VE-PE particles or CISM100 particles and lipopolysaccharide (LPS) for 1–7 days. Macrophage viability was measured using a cell counting kit (CCK-8). Control group with no particles and a LPS group were also included. Terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) staining was performed to determine macrophage apoptosis rate in response to particle exposure over time. In the second study, macrophages were exposed to VE-PE or CISM100 particles for 48h, then exposed to LPS for 30 min. Subsequently, reactive oxygen species (ROS) generation and extracellular regulated protein kinase (ERK) phosphorylation were measured. In a third study, after exposure to particles for 48h, fatigued macrophages were co-cultured with bioluminescent S. aureus strain Xen29 for 3h and 6h. Bioluminescence signal was determined to measure the total amount of bacteria. Bacterial live/dead staining and optical density at 600 nm (OD 600) were also performed to determine S. aureus viability. Statistical analysis was performed using one-way or two-way ANOVA with a post hoc examination. *indicates p<0.05. Results. CISM100 particles significantly decreased macrophage viability at day 5 and day 7 (p<0.05, Fig. 1A), while the viability of macrophages exposed to VE-PE particles was similar to controls (macrophages not exposed to particles). After 48h, macrophages exposed to VE-PE particles showed a lower TUNEL-positive rate (less apoptosis) compared to CISM100 particles (Fig. 1B, C). 48h-exposure to VE-PE particles increased ROS generation and ERK phosphorylation in 30 min-LPS-activated macrophages when compared to CISM100 particles (Fig. 2). This immune response caused by VE-PE particles resembles that of macrophages without particles. Furthermore, 48h exposure to E1 particles showed less S. aureus at 6h (Fig. 3). Conclusions. These results suggest that VE-PE particles cause reduced macrophage apoptosis and protect the macrophages' immune response. VE-PE particles also preserved the innate immunity of macrophages, unlike CISM100, as evidenced by the S. aureus co-culture study. Thus, patients with vitamin-E containing implants may be less likely to develop PJI


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_8 | Pages 133 - 133
1 May 2016
Lal S Allinson L Hall R Tipper J
Full Access

Introduction. Silicon nitride (SiN) is a recently introduced bearing material for THR that has shown potential in its bulk form and as a coating material on cobalt-chromium (CoCr) substrates. Previous studies have shown that SiN has low friction characteristics, low wear rates and high mechanical strength. Moreover, it has been shown to have osseointegration properties. However, there is limited evidence to support its biocompatibility as an implant material. The aim of this study was to investigate the responses of peripheral blood mononuclear cells (PBMNCs) isolated from healthy human volunteers and U937 human histiocytes (U937s) to SiN nanoparticles and CoCr wear particles. Methods. SiN nanopowder (<50nm, Sigma UK) and CoCr wear particles (nanoscale, generated in a multidirectional pin-on-plate reciprocator) were heat-treated for 4 h at 180°C and dispersed by sonication for 10 min prior to their use in cell culture experiments. Whole peripheral blood was collected from healthy donors (ethics approval BIOSCI 10–108, University of Leeds). The PBMNCs were isolated using Lymphoprep® as a density gradient medium and incubated for 24 h in 5% (v/v) CO2at 37°C to allow attachment of mononuclear phagocytes. SiN and CoCr particles were then added to the phagocytes at a volume concentration of 50 µm3 particles per cell and cultured for 24 h in RPMI-1640 culture medium in 5% (v/v) CO2 at 37°C. Cells alone were used as a negative control and lipopolysaccharide (LPS; 200ng/ml) was used as a positive control. Cell viability was measured after 24 h by ATPLite assay and tumour necrosis factor alpha (TNF-α) release was measured by sandwich ELISA. U937s were co-cultured with SiN and CoCr particles at doses of 0.05, 0.5, 5 and 50 µm3 particles per cell for 24h in 5% (v/v) CO2 at 37 C. Cells alone were used as a negative control and camptothecin (2 µg/ml) was used as a positive control. Cell viability was measured after 0, 1, 3, 6 and 9 days. Results from cell viability assays and TNF-α response were expressed as mean ±95% confidence limits and the data was analysed using one-way ANOVA and Tukey-Kramer post-hoc analysis. Results and Discussion. At a high volume concentration of particles (50µm3 per cell), SiN did not affect the viability of PBMNCs, while CoCr significantly reduced the viability over a 24 h period [Figure 1A]. Similarly, SiN particles had no effect on the viability of U937s up to 9 days with a range of particle doses (0.05–50 µm3 per cell) [Figure 2A]. In contrast, CoCr particles significantly reduced the viability of U937s after 6 days [Figure 2B]. Additionally, CoCr particles caused significantly elevated levels of pro-inflammatory cytokine TNF-α, whereas no inflammation was associated with SiN particles [Figure 1B]. Conclusion. This study has demonstrated the in-vitro biocompatibility of SiN nanoparticles. Therefore, SiN is a promising orthopaedic bearing material not only due to its suitable mechanical and tribological properties, but also due to its biocompatibility. Acknowledgements. The research leading to these results has received funding from the European Union's Seventh Framework Programme (FP7/2007-2013) under grant agreement no. GA-310477 LifeLongJoints


The Journal of Bone & Joint Surgery British Volume
Vol. 91-B, Issue 9 | Pages 1237 - 1242
1 Sep 2009
Tanaka S Nishino J Matsui T Komiya A Nishimura K Tohma S

We examined the usefulness of neutrophil CD64 expression in detecting local musculoskeletal infection and the impact of antibiotics on its expression. Of 141 patients suspected of musculoskeletal infection, 46 were confirmed by microbiological culture to be infected and 95 had infection excluded. The median CD64 count of patients with localised infection was 2230 molecules per cell (interquartile range (IQR) 918 to 4592) and that of the patients without infection was 937 molecules per cell (IQR 648 to 1309) (p < 0.001). The level of CD64 correlated with the CRP level in patients with infection, but not in those without infection (r = 0.59, p < 0.01). Receiver operator characteristic curve analysis revealed that CD64 was a good predictor of local infection. When the patients were subdivided into two groups based on the administration of antibiotics at the time of CD64 sampling, the sensitivity for detecting infection was better in those who had not received antibiotics.

These results suggest that measurement of CD64 expression is a useful marker for local musculoskeletal infection.