Advertisement for orthosearch.org.uk
Results 1 - 5 of 5
Results per page:
Applied filters
General Orthopaedics

Include Proceedings
Dates
Year From

Year To
Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_2 | Pages 60 - 60
10 Feb 2023
Daly D Maxwell R
Full Access

The purpose of this study is to assess the long term results of combined ACL reconstruction and unicompartmental knee replacements (UKR). These patients have been selected for this combined operation due to their combination of instability symptoms from an absent ACL and unicompartmental arthritis. Retrospective review of 44 combined UKR and ACL reconstruction by a single surgeon. Surgeries included both medial and lateral UKR combined with either revision ACL reconstruction or primary ACL reconstruction. Patient reported outcomes were obtained preoperatively, at one year, 5 years and 10 years. Revision rate was followed up over 13 years for a mean of 7.4 years post-surgery. The average Oxford score at one year was 43 with an average increase from pre-operation to 1 year post operation of 15. For the 7 patients with 10 year follow up average oxford score was 42 at 1 year, 43 at 5 years and 45 at 10 years. There were 5 reoperations. 2 for revision to total knee arthroplasty and 1 for an exchange of bearing due to wear. The other 2 were the addition of another UKR. For those requiring reoperation the average time was 8 years. Younger more active patients presenting with ACL deficiency causing instability and unicompartmental arthritis are a difficult group to manage. Combining UKR and ACL reconstruction has scant evidence in regard to long term follow up but is a viable option for this select group. This paper has one of the largest cohorts with a reasonable follow up averaging 7.4 years and a revision rate of 11 percent. Combined unilateral knee replacements and ACL reconstruction can be a successful operation for patients with ACL rupture causing instability and unicompartmental arthritis


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXV | Pages 203 - 203
1 Jun 2012
Schelfaut S
Full Access

Introduction. Despite the theoretical advantages of mobile bearings for lateral unicompartmental knee replacement (UKR), the failure rate in the initial published series of the lateral Oxford UKR's was unacceptably high. The main cause of failure was early dislocation. In contrast, dislocations of bearings in medial UKR's are rare. The lateral compartment present a higher laxity in flexion than the medial. An adaptation of the lateral design by introducing a convex tibial component and biconcave bearing should tackle this difference in kinematics. The risk of dislocation increased substantially if the lateral tibial joint line was elevated, quantified by the proximal tibial varus angle. This angle had a significant relationship to dislocation. A recent kinematic study identified roughly 3 times as much posterior translation of the tibia during deep knee bend activities after lateral UKR compared to the normal knee, possibly also resulting in a higher incidence of bearing dislocation. With the exception of dislocation, the overall early complication ratio in the initial published series of lateral Oxford UKR was also rather high compared to the last published series. Is there a learning curve?. Materials and Methods. Between January 2009 and April 2010, 16 domed lateral Oxford unicompartmental knee replacements were implanted by the senior author. The valgus deformity was in 2 cases not completely correctable. All femoral components were positioned anatomically. In no case the popliteus tendon was divided. A partial iliotibial band (ITB) release was done in 2 cases. The most common tracking deviation of the bearing peroperatively was a small lift off in deep flexion, seen in 6 cases. Results. Dislocation: no. Clinical outcome. Twelve of our patients (75%) have already good or excellent results with no pain in rest, no or mild pain with activity and good restoration of function. One patient feels some pain in deep flexion during work as a carpenter. In only one patient there is still a flexion of less than 100°. Small extension deficits are seen in 4 patients. Radiographic outcome. The full-leg radiographs showed a valgus axis of 1,2° (-1° to 7°) compared to preoperative 5,8° (0° to 14°). The assessment of the proximal tibial varus angle resulted in an angle of 3,8° (1 to 7°). The measurements on deep flexion radiographs are not yet available. Discussion and Conclusion. Until now we had no dislocation of the bearing in our series, but further follow-up is needed. The preliminary clinical results are already promising and display no early complications needing further operations. By anatomical placement of the femoral component the height of the lateral joint line seems to be respected, confirmed by a nearly correct proximal tibial varus angle in all cases. An increased proximal tibial varus angle can also be avoided by minimizing damage to the lateral soft tissues during surgery and so not over-tighten the knee. Therefore the popliteus tendon should stay intact. The elevated posterior translation, as seen in the recent kinematic studies of the lateral Oxford UKP can perhaps also be reduced by respecting those soft tissues


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XII | Pages 5 - 5
1 Apr 2012
Wakeling C Bracey D
Full Access

The Oxford unicompartmental knee replacement (UKR) was introduced in 1976 with good results. Mobile bearings in the lateral compartment have been associated with unacceptably high bearing dislocation rates, due to greater movement between the lateral femoral condyle and tibia, and the lateral collateral ligament's laxity in flexion. The new domed implant is designed to counter this with a convex tibial prosthesis and a fully-congruent, bi-concave mobile bearing allowing a full range-of-movement (ROM), minimising dislocation risk and bearing wear. We present complication rates and clinical outcomes for a consecutive series of our first 20 patients undergoing Oxford domed lateral UKR, between June 2006 and August 2009, with minimum 6-month follow-up. There was one unrelated death (31 months post-UKR) and one postop MI. We had no bearing dislocations, infections or loosening nor other complications. All patients had post-op Oxford Knee Scores; eleven had pre-op scores and demonstrated a significant improvement – mean pre-op 22.75 to post-op 35.45 (p=0.01). All achieved full extension with average ROM 116°, mean change in ROM was –2.6°(p=0.6). This study adds to previous work in confirming a low level of complications with this new procedure (including the early learning curve), particularly bearing dislocation and demonstrates excellent functional outcomes


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_8 | Pages 30 - 30
1 May 2016
Newman S Clarke S Harris S Cobb J
Full Access

Introduction. Patient Specific Instrumentation (PSI) has the potential to allow surgeons to perform procedures more accurately, at lower cost and faster than conventional instrumentation. However, studies using PSI have failed to convincingly demonstrate any of these benefits clinically. The influence of guide design on the accuracy of placement of PSI has received no attention within the literature. Our experience has suggested that surgeons gain greater benefit from PSI when undertaking procedures they are less familiar with. Lateral unicompartmental knee replacement (UKR) is relatively infrequently performed and may be an example of an operation for which PSI would be of benefit. We aimed to investigate the impact on accuracy of PSI with respect to the area of contact, the nature of the contact (smooth or studded guide surfaces) and the effect of increasing the number of contact points in different planes. Method. A standard anatomy tibial Sawbone was selected for use in the study and a computed tomography scan obtained to facilitate the production of PSI. Nylon PSI guides were printed on the basis of a lateral UKR plan devised by an orthopaedic surgeon. A control PSI guide with similar dimensions to the cutting block of the Oxford Phase 3 UKR tibial guide was produced, contoured to the anterior tibial surface with multiple studs on the tibial contact surface. Variants of this guide were designed to assess the impact of design features on accuracy. These were: a studded guide with a 40% reduction in tibial contact area, a non-studded version of the control guide, the control guide with a shim to provide articular contact, a guide with an extension to allow distal referencing at the ankle and a guide with a distal extension and an articular shim. All guides were designed with an appendage that facilitated direct attachment to a navigation machine (figure 1). 36 volunteers were asked to place each guide on the tibia with reference to a 3D model of the operative plan. The order of placement was varied using a counterbalanced latin square design to limit the impact of the learning effect. The navigation machine recorded deviations from the plan in respect of proximal-distal and medial-lateral translations as well as rotation around all three axes. Statistical analysis was performed on the compound translational and rotational errors for each guide using ANOVA with Bonferroni correction with statistical significance at p<0.05. Results. Contact points in greater than one plane led to a trend for increasing accuracy and precision of PSI guide placement with respect to rotational alignment, this achieved statistical significance relative to the control guide only with the guide that included articular and distal contact points (figure 2). No significant differences were found with respect to translation. Changes in contact area within the same plane and the use of smooth or studded contact points made no significant difference to accuracy. Conclusion. PSI guide design significantly impacts on accuracy of placement. PSI guides for UKR should endeavour to include widely separated reference points in different planes to maximise rotational accuracy


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_1 | Pages 76 - 76
1 Jan 2013
Baker P Jameson S Deehan D Gregg P Porter M Tucker K
Full Access

Background. Current analysis of unicondylar knee replacements (UKR) by national registries is based on the pooled results of medial and lateral implants. Using data from the National Joint Registry for England and Wales (NJR) we aimed to determine the proportion of lateral UKR implanted, their survival and reason for failure in comparison to medial UKR. Methods. By combining information on the side of operation with component details held on the NJR we were able to determine implant laterality (medial vs. lateral) for 32,847 of the 35,624 (92%) UKR registered before December 2010. Kaplan Meier plots, Life tables and Cox' proportion hazards were used to compare the risk of failure for lateral and medial UKRs after adjustment for patient and implant covariates. Results. 2,052 (6%) UKR were inserted on the lateral side of the knee. The rates of survival at 5 years were 93.1% (95%CI 92.7 to 93.5) for medial and 93.0% (95%CI 91.1% to 94.9%) for lateral replacements (p=0.49). The rates of failure remained equivalent after adjustment for patient age, gender, ASA grade, indication for surgery and implant type using Cox's proportional hazards (HR=0.87, 95%CI 0.68 to 1.10, p=0.24). For medial implants covariates found to influence the risk of failure were patient age (p< 0.001) and ASA grade (p=0.04). Age similarly influenced the risk of failure for lateral UKRs. Implant design (Mobile versus Fixed bearing) did not influence the risk of failure in either the medial or lateral compartment. Aseptic loosening/lysis and unexplained pain were the main reasons for revision in both groups. Conclusion. The mid-term survival of medial and lateral UKRs are equivalent. This supports the on-going use of pooled data by registries for the reporting on unicondylar outcomes in the future