Advertisement for orthosearch.org.uk
Results 1 - 8 of 8
Results per page:
Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_13 | Pages 59 - 59
1 Mar 2013
Ayyaswamy B Hasan S An A Gulerl A
Full Access

The light handle can be a major source of contamination in operation theatres where surgeries are prolonged and light handles need to be manipulated multiple times. The light handle by sheer size can obstruct laminar flow and cause eddy currents and can cause bacterial deposition on light handle which in turn can contaminate light handles. A study of light handle contamination was done from November 2010 to December 2010 at Blackpool Victoria hospital from swabs taken from light handles during preoperative, intra operative and post operative period from a single laminar flow operating theatre. A total of 40 cases were selected for study. Most of our cases were primary hip and knee replacement. The swabs were cultured into blood agar /mcconkey medium and incubated for 48 hours at 37 degree Celsius. None of the swabs showed any bacterial contamination which shows light handle is not a source of intraoperative contamination. Our trial gives a point estimate of 0% contamination rate, upper limit of the 95% confidence interval of the probability of contamination as 7.5%. we conclude that light handle is not a source of contamination in operation theatres and hence no need to change gloves every time we manipulate light handle


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_16 | Pages 129 - 129
1 Nov 2018
Sallent I Zeugolis D
Full Access

Collagen scaffolds are generally characterized by their random fibre distribution and weak mechanical properties, which makes them unsuitable as substitutes for highly anisotropic tissues such as cornea or tendon. Recently, we developed a technique to create collagen type I scaffolds with well-defined anisotropic micro-patterns. Porcine collagen was mixed with PBS10X, NaOH and one of the following cross-linkers: glutaraldehyde (GTA), genipin and 4-arm polyethylene glycol (4SP). The resulting mixture was casted on micro-grooved (2×2×2 μm) polydimethylsiloxane (PDMS) moulds and allowed to dry in a laminar flow hood to obtain 5mg/ml collagen films. Different pH, temperatures (Tº), and cross-linker concentrations were tested in the process. Collagen gelation kinetics was analysed with rheometry and surface topography was assessed with scanning electron microscopy (SEM). Human bone marrow stem cells (HBMSCs) were seeded on the films and cell alignment was analysed by rhodamine/phalloidin staining and imaged with fluorescence microscopy. From all three cross-linkers tested, only 4SP cross-linked scaffolds showed a well-defined micro-grooved pattern. Increasing pH and Tº on 4SP-treated collagen decreased gelation time, which resulted in complete inhibition of the pattern, suggesting that an initial low viscous solution is required for a correct PDMS pattern infiltration. A wide range of 4SP concentrations (0.5, 1, 1.5 mM) maintained the well-defined topography on the films, opening the door to future fine-tuning of the stiffness sensed by cells. hBMSCs seeded on top of the scaffolds aligned along the pattern for 14 days in culture. Collectively, this data highlights the potential of these collagen scaffolds as tendon substitutes


Bone & Joint Research
Vol. 2, Issue 3 | Pages 58 - 65
1 Mar 2013
Johnson R Jameson SS Sanders RD Sargant NJ Muller SD Meek RMD Reed MR

Objectives

To review the current best surgical practice and detail a multi-disciplinary approach that could further reduce joint replacement infection.

Methods

Review of relevant literature indexed in PubMed.


Bone & Joint Research
Vol. 7, Issue 1 | Pages 12 - 19
1 Jan 2018
Janz V Schoon J Morgenstern C Preininger B Reinke S Duda G Breitbach A Perka CF Geissler S

Objectives

The objective of this study was to develop a test for the rapid (within 25 minutes) intraoperative detection of bacteria from synovial fluid to diagnose periprosthetic joint infection (PJI).

Methods

The 16s rDNA test combines a polymerase chain reaction (PCR) for amplification of 16s rDNA with a lateral flow immunoassay in one fully automated system. The synovial fluid of 77 patients undergoing joint aspiration or primary or revision total hip or knee surgery was prospectively collected. The cohort was divided into a proof-of-principle cohort (n = 17) and a validation cohort (n = 60). Using the proof-of-principle cohort, an optimal cut-off for the discrimination between PJI and non-PJI samples was determined. PJI was defined as detection of the same bacterial species in a minimum of two microbiological samples, positive histology, and presence of a sinus tract or intra-articular pus.


Bone & Joint 360
Vol. 3, Issue 3 | Pages 39 - 40
1 Jun 2014
Arastu M


The Journal of Bone & Joint Surgery British Volume
Vol. 89-B, Issue 12 | Pages 1655 - 1659
1 Dec 2007
Anwar HA Aldam CH Visuvanathan S Hart AJ

The biological significance of cobalt-chromium wear particles from metal-on-metal hip replacements may be different to the effects of the constituent metal ions in solution. Bacteria may be able to discriminate between particulate and ionic forms of these metals because of a transmembrane nickel/cobalt-permease. It is not known whether wear particles are bacteriocidal.

We compared the doubling time of coagulase negative staphylococcus, Staphylococcus aureus and methicillin resistant S. aureus when cultured in either wear particles from a metal-on-metal hip simulator, wear particles from a metal-on-polyethylene hip simulator, metal ions in solution or a control.

Doubling time halved in metal-on-metal (p = 0.003) and metal-on-polyethylene (p = 0.131) particulate debris compared with the control.

Bacterial nickel/cobalt-transporters allow metal ions but not wear particles to cross bacterial membranes. This may be useful for testing the biological characteristics of different wear debris. This experiment also shows that metal-on-metal hip wear debris is not bacteriocidal.


The Journal of Bone & Joint Surgery British Volume
Vol. 90-B, Issue 9 | Pages 1249 - 1255
1 Sep 2008
Nishida H Tsuchiya H Tomita K

We evaluated the possible induction of a systemic immune response to increase anti-tumour activity by the re-implantation of destructive tumour tissue treated by liquid nitrogen in a murine osteosarcoma (LM8) model. The tumours were randomised to treatment by excision alone or by cryotreatment after excision. Tissue from the tumour was frozen in liquid nitrogen, thawed in distilled water and then re-implanted in the same animal. In addition, some mice received an immunological response modifier of OK-432 after treatment. We measured the levels of interferon-gamma and interleukin-12 cytokines and the cytotoxicity activity of splenocytes against murine LM8 osteosarcoma cells. The number of lung and the size of abdominal metastases were also measured.

Re-implantation of tumour tissue after cryotreatment activated immune responses and inhibited metastatic tumour growth. OK-432 synergistically enhanced the anti-tumour effect. Our results suggest that the treatment of malignant bone tumours by reconstruction using autografts containing tumours which have been treated by liquid nitrogen may be of clinical value.


The Journal of Bone & Joint Surgery British Volume
Vol. 90-B, Issue 8 | Pages 1106 - 1113
1 Aug 2008
Richards L Brown C Stone MH Fisher J Ingham E Tipper JL

Nanometre-sized particles of ultra-high molecular weight polyethylene have been identified in the lubricants retrieved from hip simulators. Tissue samples were taken from seven failed Charnley total hip replacements, digested using strong alkali and analysed using high-resolution field emission gun-scanning electron microscopy to determine whether nanometre-sized particles of polyethylene debris were generated in vivo. A randomised method of analysis was used to quantify and characterise all the polyethylene particles isolated.

We isolated nanometre-sized particles from the retrieved tissue samples. The smallest identified was 30 nm and the majority were in the 0.1 μm to 0.99 μm size range. Particles in the 1.0 μm to 9.99 μm size range represented the highest proportion of the wear volume of the tissue samples, with 35% to 98% of the total wear volume comprised of particles of this size. The number of nanometre-sized particles isolated from the tissues accounted for only a small proportion of the total wear volume. Further work is required to assess the biological response to nanometre-sized polyethylene particles.