Introduction: Osteoarthritis (OA) of the apophyseal (facet) joints often appears to follow degenerative changes in the adjacent intervertebral discs. We test the hypothesis that facet joint OA is directly related to high compressive load-bearing resulting from disc degeneration. Methods: Thirty six cadaveric thoraco-lumbar “motion segments” consisting of two vertebrae and the intervening disc and ligaments, were obtained from 22 human cadavers aged 64–92 yrs (mean 77 yrs). Each was subjected to a constant compressive load of 1.5 kN while the distribution of compressive stress was measured along the mid-sagittal diameter of the intervertebral disc, using a miniature pressure transducer, side-mounted in a 1.3 mm-diameter needle. Measurements of compressive “stress” were summed over area to give the compressive force resisted by the disc. This was subtracted from the applied 1.5 kN to indicate compressive load-bearing by the neural arch, including the apophyseal joints. After mechanical testing, the cartilage of each apophyseal joint surface was graded for degree of degeneration.
Autologous osteochondral grafting has demonstrated positive outcomes for treating articular cartilage defects by replacing the damaged region with a cylindrical graft consisting of bone with a layer of cartilage, taken from a non-loadbearing region of the knee. Despite positive clinical use, factors that cause graft subsidence or poor integration are relatively unknown. The aim of this study was to develop finite element (FE) models of osteochondral grafts within a tibiofemoral joint and to investigate parameters affecting osteochondral graft stability. Initial experimental tests on cadaveric femurs were performed to calibrate the bone properties and graft-bone frictional forces for use in corresponding FE models, generated from µCT scan data. The effects of cartilage defects and osteochondral graft repair were measured by examining contact pressure changes using in vitro tests on a single cadaveric human tibiofemoral joint. Six defects were created in the femoral condyles which were subsequently treated with osteochondral autografts or metal pins. Matching µCT scan-based FE models were created, and the contact patches were compared. Sensitivity to graft bone properties was investigated. The bone material properties and graft-bone frictional forces were successfully calibrated from the initial tests with good resulting levels of agreement (CCC=0.87). The tibiofemoral joint experiment provided a range of cases to model. These cases were well captured experimentally and represented accurately in the FE models. Graft properties relative to host bone had large effects on immediate graft stability despite limited changes to resultant cartilage contact pressure. Model confidence was built through extensive validation and sensitivity testing, and demonstrated that specimen-specific properties were required to accurately represent graft behaviour. The results indicate that graft bone properties affect the immediate stability, which is important for the selection of allografts and design of future synthetic grafts. Supported by the EPSRC-EP/P001076.Acknowledgements
Hip joint biomechanics can be altered by abnormal morphology of the acetabulum and/or femur. This may affect load distribution and contact stresses on the articular surfaces, hence, leading to damage and degradation of the tissue. Experimental hip joint simulators have been used to assess tribology of total hip replacements and recently methods further developed to assess the natural hip joint mechanics. The aim of this study was to evaluate articular surfaces of human cadaveric joints following prolonged experimental simulation under a standard gait cycle. Four cadaveric male right hips (mean age = 62 years) were dissected, the joint disarticulated and capsule removed. The acetabulum and femoral head were mounted in an anatomical hip simulator (Simulation Solutions, UK). A simplified twin peak gait cycle (peak load of 3kN) was applied. Hips were submerged in Ringers solution (0.04% sodium azide) and testing conducted at 1 Hertz for 32 hours (115,200 cycles). Soft tissue degradation was recorded using photogrammetry at intervals throughout testing. All four hips were successfully tested. Prior to simulation, two samples exhibited articular surface degradation and one had a minor scalpel cut and a small area of cartilage delamination. The pre-simulation damage got slightly worse as the simulation continued but no new areas of damage were detected upon inspection. The samples without surface degradation, showed no damage during testing and the labral sealing effect was more obvious in these samples. The fact that no new areas of damage were detected after long simulations, indicates that the loading conditions and positioning of the sample were appropriate, so the simulation can be used as a control to compare mechanical degradation of the natural hip when provoked abnormal conditions or labral tissue repairs are simulated.
While spinal fusion is known to be associated with adjacent disc degeneration, little is known on the role of the facet joints in the process, and whether their altered biomechanics following fusion plays a role in further spinal degeneration. This work aimed to develop a model and method to sequentially measure the effects of spinal fusion on lumbar facet joints through synchronisation of both motion analysis, pressure mapping and mechanical analysis. Parallel measurements of mature ovine lumbar facet joints (∼8yr old, n=3) were carried out using synchronised load and displacement measurements, motion capture during loading and pressure mapping of the joint spaces during loading. Functional units were prepared and cemented in PMMA endcaps. Displacement-controlled compression measurements were carried out using a materials testing machine (3365, Instron, USA) at 1 mm/min up to 950 N with the samples in a neutral position, while motion capture of the facet joints during compression was carried out using orthogonal HD webcams (Logitech, Switzerland) to measure the displacement of key facet joint features. The pressure mapping of load transfer during displacement was carried out using a flexible pressure sensor (6900 series, Tekscan, USA). Each sample was imaged at an isotropic resolution of 82 microns using a μCT scanner (XtremeCT, Scanco, Switzerland) to quantify the curvature within the facet joints.Abstract
Objectives
Methods
Understanding lumbar facet joint involvement and biomechanical changes post spinal fusion is limited. This study aimed to establish an in vitro model assessing mechanical effects of fusion on human lumbar facet joints, employing synchronized motion, pressure, and stiffness analysis. Seven human lumbar spinal units (age 54 to 92, ethics 15/YH/0096) underwent fusion via a partial nucleotomy model mimicking a lateral cage approach with PMMA cement injection. Mechanical testing pre and post-fusion included measuring compressive displacement and load, local motion capture, and pressure mapping at the facet joints. pQCT imaging (82 microns isotropic) was carried out at each stage to assess the integrity of the vertebral endplates and quantify the amount of cement injected. Before fusion, relative facet joint displacement (6.5 ± 4.1 mm) at maximum load (1.1 kN) exceeded crosshead displacement (3.9 ± 1.5 mm), with loads transferred across both facet joints. After fusion, facet displacement (2.0 ± 1.2 mm) reduced compared to pre-fusion, as was the crosshead displacement (2.2 ± 0.6 mm). Post-fusion loads (71.4 ± 73.2 N) transferred were reduced compared to pre-fusion levels (194.5 ± 125.4 N). Analysis of CT images showed no endplate damage post-fusion, whilst the IVD tissue: cement volume ratio did not correlate with the post-fusion behaviour of the specimens.Objectives
Methods and Results
The aim of this systematic review was to assess the existing published data on tuberculous arthritis involving native joints in adults aged 18 years and older. The specific research questions focused on the diagnosis and management of the disease. This study was performed in accordance with the guidelines provided in the Preferred Reporting Items for Systematic reviews and Meta-Analysis extension for Scoping Reviews (PRISMA-ScR). A systematic literature search was undertaken of Pubmed, Web of Science, Scopus and the Cochrane library. Only studies published in English since 1970 were considered. Case series involving less than 10 patients, systematic and narrative reviews, and laboratory or animal studies were excluded. We also excluded reports of TB infections not involving a “native joint” and tuberculosis of the spine. The level of evidence and strength of recommendations was performed in accordance with the GRADE system.Aim
Method
One assumed function of Total Ankle Replacement (TAR) is that by maintaining ankle joint motion we can protect the other hind foot joints from further degredation1. However, there is no work to our knowledge that compares hindfoot outcomes between TAR and arthrodesis. Sokolowski et al. found that 68% of TAR patients had no radiological progression of subtalar arthritis after TAR, and 4% went on to fusion2. However, no evaluation of the other hindfoot joints was made and no comparison made to other treatment. We performed a retrospective review of all patients at our centre who had had a TAR or ankle arthrodesis since 2002. Case notes and imaging were reviewed and all instances of hindfoot treatment (injections or surgical procedures) noted. Patients were excluded who had no documentation, were followed up at other hospitals, had prior hindfoot fusion, or were having staged surgeries at the time of index treatment. Chi squared analysis was used to compare the cohorts. 214 arthrodesis cases and 302 TAR were eligible. The average age was 57. Average time to follow up was 13 years (4–21). At the time of abstract submission 107 sets of notes had been reviewed fully. Full analysis will be performed by conference. 14% of TAR patients went on to have further procedures to the hindfoot joints while 35% of arthrodesis patients had further procedures (p=0.014). There was also a significant difference in the number of patients progressing to fusion of a further hindfoot joint between groups (TAR- 4%, arthrodesis- 20%, p=0.01). These data suggest that TAR are protective of symptomatic change of hindfoot joints. Patients with TAR had fewer hindfoot fusions than those with arthrodesis and also fewer procedures of any form, including injections.
To evaluate the effectiveness of an institutionally developed
algorithm for evaluation and diagnosis of prosthetic joint injection
and to determine the impact of this protocol on overall hospital
re-admissions.p We retrospectively evaluated 2685 total hip arthroplasty (THA)
and total knee arthroplasty (TKA) patients prior to (1263) and following
(1422) the introduction of an infection detection protocol. The
protocol used conservative thresholds for C-reactive protein to
direct the medical attendant to aspirate the joint. The protocol
incorporated a clear set of laboratory and clinical criteria that
allowed a patient to be discharged home if all were met. Patients were
included if they presented to our emergency department within 120
days post-operatively with concerns for swelling, pain or infection
and were excluded if they had an unambiguous infection or if their
chief complaint was non-orthopaedic in nature.Aims
Patients and Methods
Cobalt chrome-on-cobalt chrome bearing surfaces have been re-introduced despite some concerns regarding potential risks posed by soluble metallic by-products. We have investigated whether there are metal-selective differences between the levels of genetic damage caused to a human cell line when cultured with synovial fluids retrieved from various designs of orthopaedic joint replacement prostheses at the time of revision arthroplasty. Synovial fluids were retrieved from revision hip and knee arthroplasty patients with bearings made from cobalt chrome-on-cobalt chrome, cobalt chrome-on-polyethylene and stainless steel-on-polyethylene. Control synovial fluids were retrieved from primary arthroplasty cases with osteoarthritis. Synovial fluid was cultured with human primary fibroblasts for 48 hours in a cell culture system under standardised conditions. The “Comet” assay was used with an image analysis system to measure levels of DNA damage caused by the various synovial fluid samples. Synovial fluids from cobalt chrome-on-cobalt chrome and cobalt chrome-on-polyethylene joint replacements both caused substantial levels of genetic damage as detected by the Comet assay. Synovial fluids retrieved from stainless steel-on-polyethylene joints caused low levels of damage. The difference between these groups was highly statistically significant (p<
0.001). Control synovial fluids from osteoarthritic joints caused minimal changes. Atomic absorption spectroscopy demonstrated that the metal-on-metal synovial fluids contained the highest levels of cobalt and chromium. Different alloys used in orthopaedic implants are associated with different levels of DNA damage to cultured human cells in vitro. We are able to demonstrate that this damage is attributable at least in part to the metal content of the synovial fluid samples. We have no evidence for any long-term health risk to patients with such implants.
Untreated hip osteoarthritis is a debilitating condition leading to pain, bone deformation, and limited range of motion. Unfortunately, studies have not been conducted under in vivo conditions to determine progressive kinematics variations to a hip joint from normal to pre-operative and post-operative THA conditions. Therefore, the objective was this study was to quantify normal and degenerative hip kinematics, compared to post-operative hip kinematics. Twenty unique subjects were analyzed; 10 healthy, normal subjects and 10 degenerative, subjects analyzed pre-operatively and then again post-operatively after receiving a THA. During each assessment, the subject performed a gait (stance and swing phase) activity under mobile, fluoroscopic surveillance. The normal and diseased subjects had CT scans in order to acquire bone geometry while implanted subjects had corresponding CAD models supplied. Femoral head and acetabular cup centers were approximated by spheres based on unique geometries while the component centers were pre-defined as the center of mass. These centers were used to compare femoral head sliding magnitudes on the acetabular cup during the activity for all subjects. Subjects were noted to have separation with changes in center magnitudes of more than 1 mm during gait. Utilizing 3D-to-2D registration techniques, the hip joint kinematics were derived and assessed. This allowed for visualization of normal subject positioning, pre-op bone deterioration, and implant placement within the bones.Introduction
Methods
Proximal fibular osteotomy (PFO) was defined to provide a treatment option for knee pain caused by gonarthrosis(1). Minor surgical procedure, low complication rate and dramatic pain relief were the main reasons for popularization of this procedure(2, 3). However, changes at the knee and ankle joint after PFO were not clarified objectively in the literature. We asked: 1) Does PFO change the maximum and average pressures at the medial and lateral chondral surface of the tibia plateau? 2) Are chondral surface stresses redistributed at the knee and ankle joint after PFO? 3)Does PFO change the distribution of total load on the knee joint? 4) Can PFO lead to change in alignment of lower limb?Abstract
Background
Questions/purposes
Metal-on-metal joint replacements have been reintroduced despite some concerns regarding the potential risks posed by soluble metallic by-products. We have investigated whether there are metal selective differences between the levels of genetic damage caused to a human cell line when cultured with synovial fluids retrieved from orthopaedic joint replacement prostheses at the time of revision arthroplasty.
We identified several opportunities to significantly reduce cost for hip and knee arthroplasty procedures:
Customized instruments: by identifying the essential instruments for arthroplasty cases, we managed to have one universal tray for each case, and 3 specific trays from the implant manufacturing company. Customized wrap-free, color-coded, stackable trays: by using a wrap-free trays, preparation time in central sterile, opening tray time in OR and turn-over time were reduced. Also, stackable trays were organized based on side and size, therefore only 2 trays needed to be used in each case. Discounted implants: negotiated through optional case coverage with revision system and reps available as backup. Optional rep coverage protocols: designed through process management of the operating room surgical staff and central sterile Aim of the study was to measure the cost savings, efficacy, and outcomes associated with primary total hip and knee arthroplasty by implementing these protocol This is a prospective study from January to October 2016 for selected primary total hip and knee arthroplasties were performed with the above protocols by 2 experienced arthroplasty trained surgeons, were followed for minimum 3 months. Initiating the cost saving protocols were achieved by re-engineering customized trays, discounted implants through optional case coverage (Sourced Based Selection of a Cooperating Manufacturer, MTD), and focused on process management of the staff training. Staff responsibilities were divided into 2 categories:
Familiarity of the instruments, implant, and techniques; trays set up and assurance of availability of the implants. These responsibilities were covered by a trained OR technician and the surgeon Final verification of the accurate implants prior to opening the packaging. This was achieved by a trained OR nurse and the surgeonBackground
Methods
The fingers and thumb are the second most common site for dislocation of joints following injury (3.9/10,000/year). Unlike fractures, the pattern and patient reported outcomes following dislocations of the hand have not previously been reported. All patients presenting with a dislocation or subluxation of the fingers or thumb were included in this cohort study (November 2008 and October 2009). Patient demographic and injury data were obtained and dislocation pattern confirmed on radiographs. Patient reported outcomes were obtained using the Michigan Hand Outcome Questionnaire (MHQ). There were 202 dislocations/subluxations recorded. MHQ scores were obtained at 3–5 years for 74percnt; patients. The average age at injury was 40 years, 76percnt; (146) patients were male and 11percnt; (23) injuries were open. 50percnt; (101) of the dislocations were dorsal, 28percnt; (57) were associated with fractures and 4percnt; (9) were recurrent. There were significant associations between: 1, Direction of dislocation and finger involved (p=0.03); 2, Joint and mechanism of dislocation (p=0.001); 3, Mechanism and direction of dislocation (p=0.008). Older patients had significantly worse outcomes (p<0.001). This is the first study to assess the epidemiology and patient reported outcomes following dislocation of the fingers and thumb allowing us to better understand these injuries.
Many recent knee prostheses are designed aiming to the physiological knee kinematics on tibiofemoral joint, which means the femoral rollback and medial pivot motion. However, there have been few studies how to design a patellar component. Since patella and tibia are connected by a patellar tendon, tibiofemoral and patellofemoral motion or contact forces might affect each other. In this study, we aimed to discuss the optimal design of patellar component and simulated the knee flexion using four types of patellar shape during deep knee flexion. Our simulation model calculates the position/orientation, contact points and contact forces by inputting knee flexion angle, muscle forces and external forces. It can be separated into patellofemoral and tibiofemoral joints. On each joint, calculations are performed using the condition of point contact and force/moment equilibrium. First, patellofemoral was calculated and output patellar tendon force, and tibiofemoral was calculated with patellar tendon force as external force. Then patellofemoral was calculated again, and the calculation was repeated until the position/orientation of tibia converged. We tried four types of patellar shape, circular dome, cylinder, plate and anatomical. Femoral and tibial surfaces are created from Scorpio NRG PS (Stryker Co.). Condition of knee flexion was passive, with constant muscle forces and varying external force acting on tibia. Knee flexion angle was from 80 to 150 degrees. As a result, the internal rotation of tibia varied much by using anatomical or plate patella than dome or cylinder shape. Although patellar contact force did not change much, tibial contact balances were better on dome and cylinder patella and the medial contact forces were larger than lateral on anatomical and plate patella. Thus, the results could be divided into two types, dome/cylinder and plate/anatomical. It might be caused by the variations of patellar rotation angle were large on anatomical and plate patella, though patellar tilt angles were similar in all the cases. We have already reported that the anatomical shape of patella would contact in good medial-lateral balance when tibia moved physiologically, therefore we have predicted the anatomical patella might facilitate the physiological tibiofemoral motion. However, the results were not as we predicted. Actually our previous and this study are not in the same condition; we used a posterior-stabilized type of prosthesis, and the post and cam mechanism could not make the femur roll back during deep knee flexion. It might be better to choose dome or cylinder patella to obtain the stability of tibiofemoral joint, and to choose anatomical or plate to the mobility.
Geometric variations of the hip joint can give rise to abnormal joint loading causing increased stress on the articular cartilage, which may ultimately lead to degenerative joint disease. In-vitro simulations of total hip replacements (THRs) have been widely reported in the literature, however, investigations exploring the tribology of two contacting cartilage surfaces, and cartilage against metal surfaces using complete hip joint models are less well reported. The aim of this study was to develop an in-vitro simulation system for investigating and comparing the tribology of complete natural hip joints and hemiarthroplasties with THR tribology. The simulation system was used to assess natural porcine hip joints and porcine hemiarthroplasty hip joints. Mean friction factor was used as the primary outcome measure to make between-group comparisons, and comparisons with previously published tribological studies. In-vitro simulations were conducted on harvested porcine tissue. A method was developed enabling natural acetabula to be orientated with varying angles of version and inclination, and natural femoral heads to be potted centrally with different orientations in all three planes. Acetabula were potted with 45° of inclination and in the complete joint studies, natural femoral heads were anatomically matched and aligned (n=5). Hemiarthroplasty studies (n=5) were conducted using cobalt chrome (CoCr) heads mounted on a spigot (Figure 1), size-matched to the natural head. Natural tissue was fixed using PMMA (polymethyl methacrylate) bone cement. A pendulum friction simulator (Simulator Solutions, UK), with a dynamic loading regime of 25–800N, ± 15° flexion-extension (FE) at 1 Hertz was used. The lubricant was a 25% (v/v) bovine serum. Axial loading and motion was applied through the femoral head and frictional torque was measured using a piezoelectric transducer, from which the friction factor was calculated.Introduction
Method