Advertisement for orthosearch.org.uk
Results 1 - 13 of 13
Results per page:
Bone & Joint Research
Vol. 13, Issue 7 | Pages 321 - 331
3 Jul 2024
Naito T Yamanaka Y Tokuda K Sato N Tajima T Tsukamoto M Suzuki H Kawasaki M Nakamura E Sakai A

Aims. The antidiabetic agent metformin inhibits fibrosis in various organs. This study aims to elucidate the effects of hyperglycaemia and metformin on knee joint capsule fibrosis in mice. Methods. Eight-week-old wild-type (WT) and type 2 diabetic (db/db) mice were divided into four groups without or with metformin treatment (WT met(-/+), Db met(-/+)). Mice received daily intraperitoneal administration of metformin and were killed at 12 and 14 weeks of age. Fibrosis morphology and its related genes and proteins were evaluated. Fibroblasts were extracted from the capsules of 14-week-old mice, and the expression of fibrosis-related genes in response to glucose and metformin was evaluated in vitro. Results. The expression of all fibrosis-related genes was higher in Db met(-) than in WT met(-) and was suppressed by metformin. Increased levels of fibrosis-related genes, posterior capsule thickness, and collagen density were observed in the capsules of db/db mice compared with those in WT mice; these effects were suppressed by metformin. Glucose addition increased fibrosis-related gene expression in both groups of mice in vitro. When glucose was added, metformin inhibited the expression of fibrosis-related genes other than cellular communication network factor 2 (Ccn2) in WT mouse cells. Conclusion. Hyperglycaemia promotes fibrosis in the mouse knee joint capsule, which is inhibited by metformin. These findings can help inform the development of novel strategies for treating knee joint capsule fibrosis. Cite this article: Bone Joint Res 2024;13(7):321–331


Bone & Joint Research
Vol. 9, Issue 6 | Pages 302 - 310
1 Jun 2020
Tibbo ME Limberg AK Salib CG Turner TW McLaury AR Jay AG Bettencourt JW Carter JM Bolon B Berry DJ Morrey ME Sanchez-Sotelo J van Wijnen AJ Abdel MP

Aims

Arthrofibrosis is a relatively common complication after joint injuries and surgery, particularly in the knee. The present study used a previously described and validated rabbit model to assess the biomechanical, histopathological, and molecular effects of the mast cell stabilizer ketotifen on surgically induced knee joint contractures in female rabbits.

Methods

A group of 12 skeletally mature rabbits were randomly divided into two groups. One group received subcutaneous (SQ) saline, and a second group received SQ ketotifen injections. Biomechanical data were collected at eight, ten, 16, and 24 weeks. At the time of necropsy, posterior capsule tissue was collected for histopathological and gene expression analyses (messenger RNA (mRNA) and protein).


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_1 | Pages 118 - 118
2 Jan 2024
Meng H Verrier S Grad S Li Z
Full Access

Pericytes are contractile, motile cells that surround the capillary. Recent studies have shown that pericytes promoted joint fibrosis and induced subchondral bone angiogenesis, indicating the role of pericytes in osteoarthritis (OA). However, whether pericytes are involved in regulating inflammatory and catabolic response, as well as fibrotic repair of cartilage is still unclear. Here we used 2D and 3D models to investigate the communication of pericytes and chondrocytes under inflammatory osteoarthritis conditions. CD34-CD146+ pericytes were isolated and sorted from human bone marrow. Human OA chondrocytes were isolated from OA joints. In 2D studies, monolayer cultured chondrocytes were treated +/- pericyte conditioned media, +/- 1ng/ml IL1β for 24h. In 3D studies, pericytes and chondrocytes were cultured within fibrin gel in 3D polyurethane scaffolds, separately or combined for 7 days, followed by treatment of +/- IL1β for another 7 days (Fig 2A). The inflammatory response, catabolic activity and expression of fibrosis markers of chondrocytes and pericytes were measured by ELISA and/or q-rtPCR. Pericytes had weak inflammatory, catabolic and fibrotic response to IL1β (data not shown). The 2D study showed that pericyte conditioned media promoted inflammation, catabolism and fibrosis markers of chondrocytes, in the absence of IL1β treatment (Figure 1). However, study in 3D showed that coculture of chondrocytes and pericytes reduced the inflammatory and catabolic response of chondrocytes to IL1β and induced fibrosis markers in chondrocytes (Figure 2). Pericytes are involved in regulating inflammatory response, catabolic response and fibrosis of chondrocytes. The opposite results from 2D and 3D experiments indicate the variety of the regulatory role of pericytes in the interaction with chondrocytes within different culture models. The underlying mechanism is under evaluation with on-going studies. Acknowledgements. This study was funded by SINPAIN project, from European Union's Horizon Europe research and innovation programme under Grant Agreement NO. 101057778. Funded by the European Union. Views and opinions expressed are however those of the author(s) only and do not necessarily reflect those of the European Union. Neither the European Union nor the granting authority can be held responsible for them. For any figures or tables, please contact the authors directly


Orthopaedic Proceedings
Vol. 93-B, Issue SUPP_III | Pages 243 - 243
1 Jul 2011
Monument M Hart DA Befus AD Salo PT Hildebrand K
Full Access

Purpose: To determine if mast cell activity is vital to the induction of joint capsule fibrosis and contracture formation in a rabbit model of posttraumatic joint contracture. Method: To reproducibly induce joint contractures, we used a model of surgical injury and immobilization of the knee in skeletally mature New Zealand white rabbits. Four animals groups were studied: a non-operative control group (CON), an operative contracture group (ORC) and two-operative groups treated with a mast cell stabilizer, Ketotifen fumarate at doses of 0.5mg/kg (KF0.5) and 1.0mg/kg (KF1.0) twice daily subcutaneously, respectively. Animals were sacrificed after 8 weeks of immobilization. Flexion contractures (biomechanics), cellular counts of myofibroblasts and mast cells within the joint capsule (immunohistochemistry) and the joint capsule protein expression of TGF-β1, collagen I and III were quantified (western blots). Biomechanical data was interpreted using a linear regression analysis of repeated measures and an ANOVA analysis of variance was used for molecular data. Significance was defined at p< 0.05 for all statistical tests. Results: Flexion contractures were most severe in the ORC group and treatment with Ketotifen (both KF0.5 and KF1.0) significantly reduced contracture severity by 52% and 42%, respectively (p< 0.03). Joint capsule myofibroblast and mast cell hyperplasia was a prominent feature of the more severely contracted ORC group and myofibroblast and mast cell numbers were dramatically reduced in both Ketotifen groups (p< 0.001). The expression of TGF-β1 and collagen I was also increased in the ORC group and significantly reduced in both Ketotifen groups (p< 0.01). Conclusion: Joint capsule fibrosis, characterized by hyperplasia of myofibroblasts and mast cells and enhanced collagen deposition, is a prominent feature of posttraumatic joint contractures in this animal model. Treatment with a mast cell stabilizer reduced the molecular markers of joint capsule fibrosis and the resultant biomechanical severity of contracture formation. These results suggest mast cell activity may be an important process in the development of posttraumatic contractures and future work is needed to determine if pharmacological inhibition of mast cell activity has a preventative or therapeutic role in humans


Bone & Joint Research
Vol. 13, Issue 6 | Pages 279 - 293
7 Jun 2024
Morris JL Letson HL McEwen PC Dobson GP

Aims

Adenosine, lidocaine, and Mg2+ (ALM) therapy exerts differential immuno-inflammatory responses in males and females early after anterior cruciate ligament (ACL) reconstruction (ACLR). Our aim was to investigate sex-specific effects of ALM therapy on joint tissue repair and recovery 28 days after surgery.

Methods

Male (n = 21) and female (n = 21) adult Sprague-Dawley rats were randomly divided into ALM or Saline control treatment groups. Three days after ACL rupture, animals underwent ACLR. An ALM or saline intravenous infusion was commenced prior to skin incision, and continued for one hour. An intra-articular bolus of ALM or saline was also administered prior to skin closure. Animals were monitored to 28 days, and joint function, pain, inflammatory markers, histopathology, and tissue repair markers were assessed.


The Bone & Joint Journal
Vol. 102-B, Issue 10 | Pages 1331 - 1340
3 Oct 2020
Attard V Li CY Self A Mann DA Borthwick LA O’Connor P Deehan DJ Kalson NS

Aims

Stiffness is a common complication after total knee arthroplasty (TKA). Pathogenesis is not understood, treatment options are limited, and diagnosis is challenging. The aim of this study was to investigate if MRI can be used to visualize intra-articular scarring in patients with stiff, painful knee arthroplasties.

Methods

Well-functioning primary TKAs (n = 11), failed non-fibrotic TKAs (n = 5), and patients with a clinical diagnosis of fibrosis1 (n = 8) underwent an MRI scan with advanced metal suppression (Slice Encoding for Metal Artefact Correction, SEMAC) with gadolinium contrast. Fibrotic tissue (low intensity on T1 and T2, low-moderate post-contrast enhancement) was quantified (presence and tissue thickness) in six compartments: supra/infrapatella, medial/lateral gutters, and posterior medial/lateral.


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_11 | Pages 172 - 172
1 Jul 2014
Hildebrand K Zhang M Salo P Hart D Befus D
Full Access

Summary. Previous work in a rabbit model of post-traumatic joint contractures shows that the mast cell stabilizer ketotifen decreases contracture severity. We show here that ketotifen decreases collagen gel contraction mediated by rabbit joint capsule fibroblasts when mast cells are present. Introduction. Ketotifen was shown to decrease contracture severity and associated joint capsule fibrosis in an animal model of post-traumatic joint contractures. Ketotifen prevents the release of profibrotic growth factors from mast cells (MC). An in vitro collagen gel contraction assay is used to examine the effect of ketotifen on joint capsule fibroblasts obtained from this animal model. Methods. Six New Zealand White rabbits had a standardised procedure to induce post-traumatic joint contractures and the joint capsule was harvested 4 weeks later. The capsules were minced, placed into T75 culture flasks and incubated at 37. 0. C in a humidified atmosphere containing 5% CO. 2. The Joint Capsule fibroblasts (JC, 2.5 × 10. 5. cells/mL) were mixed with neutralised collagen solution composed of 59% neutralised PureCol collagen I, serum free DMEM/F12 with 1x serum replacement and 1x antibiotic-antimycotic. Aliquots of solution were then cast into wells of a tissue culture plate. Gelation occurred over 3h at 37°C in a humidified incubator. The collagen gel/cells were maintained with DMEM/F-12 plus 1% serum replacement and 1% antibiotic-antimycotic and incubated at 37°C for 12 h. The gels were released and gel area was calculated up to 72h post-release. Different experiments were conducted with various combinations of a human mast cell line (HMC-1, 7.5 × 10. 5. cells/mL), the neuropeptide Substance P (SP, 10. −6. M) and Ketotifen fumurate at 10. −4. , 10. −6. , 10. −8. and 10. −10. M. The various interventions were combined with the JC and collagen gel during the gelation step. Statistical comparisons used a two way ANOVA with a Posthoc Tukey test. Significance was set at p < 0.05. Results. The JC contracted the collagen gels in all conditions, with statistically significant differences between time intervals from 6 h to 72 h. When ketotifen alone was added to JC, there was no effect on collagen gel contraction in the range of doses tested. Adding MC to JC led to a significantly increased rate of gel contraction that was inhibited by ketotifen in a dose-dependent manner. The effect was maximal with a concentration of 10. −4. M while the effect was absent by the dose of 10. −10. M. There were statistically significant differences amongst different doses except for comparisons between doses closest to each other (10. −4. vs 10. −6. , 10. −6. vs 10. −8. , 10. −8. vs 10. −10. M). Including SP with MC and JC further increased the rate of gel contraction, which was also significantly inhibited by ketotifen in a similar dose-dependent fashion. Discussion/Conclusion. Fibroblasts from rabbit joint capsules contract collagen gels with the effect enhanced by the addition of mast cells. Ketotifen prevents the release of mediators by mast cells, and ketotifen modified the collagen gel assay. It appears that the inhibition of the gel contraction by the fibroblasts is via mast cell stabilization since ketotifen had no direct affect on the fibroblasts in the concentrations evaluated. Ketotifen is a medication used in the chronic treatment of asthma. It has a wide safety profile, it is already approved for human use and it is available in oral preparations


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XVIII | Pages 30 - 30
1 May 2012
Harrison A Kobla V Sandy J Li J Plaas A
Full Access

Background. Osteoarthritis (OA), is characterised with a loss of cartilage and pain in affected joints. It is this pain which most patients associate with their condition. Intra-articular (IA) hyaluronan (HA) has been shown to reduce the pain associated with OA both in animal models and in clinical trials. There are purified HA available and in recent years hyaluronan hydrogels, where the material has been cross-linked into networks, have become available. One of these cross-linked HA hydrogels is Durolane¯. This study has sought to evaluate the effect of Durolane in an in vivo model of osteoarthritis. Methods. Mice (C57BL/6, 12 weeks) were obtained from Jackson Labs and all protocols were approved by Rush IACUC. Joint injury was initiated by TGFb1 injection as described [1]. Mice were given IA injections of 200 ng TGFb1, at days 1 and 3 delivered in a 6 ul volume into the rear right knee joint only. Twenty four hours after the second injection of TGFb1 10 ul of Durolane was injected into the same knee joint. All animals were exercised daily on a treadmill to induce tissue degeneration. Three groups of animals were evaluated: Naïve (n = 4), TGFb1 + saline (n = 5) and TGFb1 + Durolane (n = 5). Running performance was monitored daily and 15 days post injections, gait was assessed quantitatively using the TreadScan gait analysis system (CleverSys). Results. Combined treatment of IA TGFb1 and treadmill running results in rapid and reproducible OA-like joint tissue remodelling in injected knee joints, including cartilage erosion, synovial and joint capsule fibrosis and chondrophyte accumulation along joint margins [2]. It was clear that the injections of TGFb1 + saline into the rear right knee joint caused impairment in gait, such as limping and difficulty to maintain treadmill running. In comparison the TGFb1 + Durolane treated animals showed running behaviours similar to that seen in untreated naïve mice. Quantitative assessment of gait using the TreadScan system, for a number of gait parameters, confirmed that Durolane returned the gait in these animals with induced OA closer to the gait of naïve animals. For example the stance time, described as time elapsed while the foot is in contact with the tread in its stance phase, being 185.81 ms (SD 34.85) for naïve, 249.67 ms (SD 37.58) for TGFb1 + saline and 214.86 ms (SD 28.1) for TGFb1 + Durolane treated animals. Single factor ANOVA for primary comparison between TGFb1 + Durolane and TGFb1 + saline provided a significant improvement for the Durolane group (p < 0.05). Conclusions. This study has demonstrated that a single IA injection of Durolane can improve gait in this non-surgical model of OA confirming earlier data that Durolane provides anti-nociceptive effects in a model of joint pain [3]


Orthopaedic Proceedings
Vol. 93-B, Issue SUPP_IV | Pages 557 - 558
1 Nov 2011
Hildebrand KA Monument MJ
Full Access

Purpose: The presence of hemarthrosis during joint injury is a potential inciting stimulus in the genesis of joint capsule fibrosis. Using a rabbit model of posttraumatic knee joint contracture, our hypothesis was that, bone marrow-derived elements of hemarthrosis rather than simply the presence of blood in the joint, trigger the induction of capsule fibrosis in post-traumatic joint contracture. Method: 35 Skeletally mature New Zealand White female rabbits (12–18 months old, 5.5 ± 0.5 kg) were randomly assigned to one of five groups: Immobilization-Only (IMO), Immobilization+ Bone Marrow (IMBM), Immobilization+ Peripheral Blood (IMPB), Bone Marrow-Only (BMO), and Controls. Surgeries: Immobilization groups had one knee joint fixed at full flexion with a Kirschner wire drilled through the tibia, passed posterior (extra-articular) to the knee joint and bent around the femur. Bone marrow groups had cortical windows removed from the non-articular cartilage portion of the medial and lateral femoral condyles. In the IMPB group, autologous peripheral venous blood was injected into the immobilized knee joint to recreate a non-traumatic hemarthrosis. The control group did not have any intervention. Joint angle measurements: After 8 weeks, rabbits were euthanized, all muscular tissue was removed and maximum extension angle of the joints with intact capsule was measured using a standard torque applied via a custom made rabbit knee gripping device attached to a MTS TestStar II. Each joint was cycled 5 times (0.2 Nm) and the average of 5 cycles was calculated. Statistical analysis consisted of a one-way ANOVA with posthoc Scheffe test (significance p < 0.05). Data are presented as mean +/ − standard deviation. Results: The IMBM (n=8) and IMPB (n=7) groups had significantly greater contractures (52 +/ − 12 and 58 +/ − 13 degrees, respectively) when compared to the BMO (n=7) and control (n=6) groups (32 +/ − 10 and 32 +/ − 13 degrees, respectively). The IMO group had average contracture measures of 44 +/ − 15 degrees. There was no statistically significant difference between the IMBM and IMPB groups. Conclusion: The present study showed differences in the contracture severity of the immobilized knees associated with hemarthrosis compared to other experimental and control groups. There does not appear to be a difference whether the hemarthrosis arose from a fracture (bone marrow) versus peripheral blood in rabbits. Future work will look at reversibility of contractures in the various groups. Studies on the joint capsule will evaluate myofibroblast numbers in concert with mast cell and neuropeptide distribution based on our previous work. Such knowledge will aid the prevention and treatment of the difficult and disabling problem of contracture formation after joint injury


The Bone & Joint Journal
Vol. 98-B, Issue 11 | Pages 1479 - 1488
1 Nov 2016
Kalson NS Borthwick LA Mann DA Deehan DJ Lewis P Mann C Mont MA Morgan-Jones R Oussedik S Williams FMK Toms A Argenson JN Bellemans J Bhave A Furnes O Gollwitzer H Haddad FS Hofmann S Krenn V

Aims

The aim of this consensus was to develop a definition of post-operative fibrosis of the knee.

Patients and Methods

An international panel of experts took part in a formal consensus process composed of a discussion phase and three Delphi rounds.


Bone & Joint Research
Vol. 3, Issue 3 | Pages 82 - 88
1 Mar 2014
Abdel MP Morrey ME Barlow JD Grill DE Kolbert CP An KN Steinmann SP Morrey BF Sanchez-Sotelo J

Objectives

The goal of this study was to determine whether intra-articular administration of the potentially anti-fibrotic agent decorin influences the expression of genes involved in the fibrotic cascade, and ultimately leads to less contracture, in an animal model.

Methods

A total of 18 rabbits underwent an operation on their right knees to form contractures. Six limbs in group 1 received four intra-articular injections of decorin; six limbs in group 2 received four intra-articular injections of bovine serum albumin (BSA) over eight days; six limbs in group 3 received no injections. The contracted limbs of rabbits in group 1 were biomechanically and genetically compared with the contracted limbs of rabbits in groups 2 and 3, with the use of a calibrated joint measuring device and custom microarray, respectively.


Bone & Joint Research
Vol. 6, Issue 3 | Pages 162 - 171
1 Mar 2017
Walker JA Ewald TJ Lewallen E Van Wijnen A Hanssen AD Morrey BF Morrey ME Abdel MP Sanchez-Sotelo J

Objectives

Sustained intra-articular delivery of pharmacological agents is an attractive modality but requires use of a safe carrier that would not induce cartilage damage or fibrosis. Collagen scaffolds are widely available and could be used intra-articularly, but no investigation has looked at the safety of collagen scaffolds within synovial joints. The aim of this study was to determine the safety of collagen scaffold implantation in a validated in vivo animal model of knee arthrofibrosis.

Materials and Methods

A total of 96 rabbits were randomly and equally assigned to four different groups: arthrotomy alone; arthrotomy and collagen scaffold placement; contracture surgery; and contracture surgery and collagen scaffold placement. Animals were killed in equal numbers at 72 hours, two weeks, eight weeks, and 24 weeks. Joint contracture was measured, and cartilage and synovial samples underwent histological analysis.


Bone & Joint Research
Vol. 5, Issue 1 | Pages 11 - 17
1 Jan 2016
Barlow JD Morrey ME Hartzler RU Arsoy D Riester S van Wijnen AJ Morrey BF Sanchez-Sotelo J Abdel MP

Aims

Animal models have been developed that allow simulation of post-traumatic joint contracture. One such model involves contracture-forming surgery followed by surgical capsular release. This model allows testing of antifibrotic agents, such as rosiglitazone.

Methods

A total of 20 rabbits underwent contracture-forming surgery. Eight weeks later, the animals underwent a surgical capsular release. Ten animals received rosiglitazone (intramuscular initially, then orally). The animals were sacrificed following 16 weeks of free cage mobilisation. The joints were tested biomechanically, and the posterior capsule was assessed histologically and via genetic microarray analysis.