INTRODUCTION. Intervertebral disc (IVD) degeneration is not completely understood because of the lack of relevant models. In vivo models are
Abstract. Objectives. Biomechanics is an essential form of measurement in the understanding of the development and progression of osteoarthritis (OA). However, the number of participants in biomechanical studies are often small and there is limited ways to share or combine data from across institutions or studies. This is essential for applying modern machine learning methods, where large, complex datasets can be used to identify patterns in the data. Using these data-driven approaches, it could be possible to better predict the optimal interventions for patients at an early stage, potentially avoiding pain and
Aims and objectives. Our aim was to evaluate the indications for patients undergoing magnetic resonance imaging (MRI) of the knee prior to referral to an orthopaedic specialist, and ascertain whether these scans altered initial management. Materials and Method. We retrospectively reviewed all referrals received by a single specialist knee surgeon over a 1-year period. Patient demographics, relevant history, examination findings and past surgical procedures were documented. Patients having undergone MRI prior to referral were identified and indications for the scans recorded. These were reviewed against The NHS guidelines for Primary Care Physicians to identify if the imaging performed was appropriate in each case. Results. A total of 261 patients were referred between 1. st. July 2018 and 30. th. June 2019. 87/261 patients underwent MRI of the knee joint prior to referral. The mean patient age was 53 years with predominance of male patients (52 verses 35 females). 21/87 patients (24%) underwent the appropriate imaging prior to referral with only 13% of patients undergoing x-ray imaging before their MRI. In cases where MRI was not indicated, patients waited an average of 12 weeks between their scan and a referral being sent to the specialist knee surgeon. Conclusion. 76% of patients referred to orthopaedics had
Virtual Fracture Clinic (VFC) is a consultant-led orthopaedic trauma outpatient triage and management service. The use of VFC has recently become commonplace in the United Kingdom. It allows multiple referral sources to the orthopaedic team, with clinical information and imaging reviewed by a consultant in VFC who formulates an appropriate management plan with the patient contacted; either to attend clinic for consultation or discharged with advice over the phone. The VFC is more efficient than a traditionally delivered outpatient fracture clinic service. We have utilized VFC for 1 year at our hospital, East Kent University Hospital Foundation Trust (EKHUFT), and undertook a closed loop audit to evaluate the service and highlight potential areas of improvement. The Objective of the study was to identify whether the implementation of new re-designed VFC referral guidelines together with teaching set across one of the hospitals in EKHUFT improved the effectiveness and standards of VFC referrals. An initial audit was performed of all referrals made to VFC over a 2 weeks period in December 2018. Changes to the VFC referral pathway were implemented, and teaching sessions performed by the orthopaedic team to all referring units, including minor injury units (MIU) and the emergency department (ED). After implementation, re-audit of VFC referrals was performed in February 2019 over a similar 2 weeks period. Patient demographics, diagnosis and outcomes were collected from the online patient record with images reviewed using PACS software. Following intervention, referral rates dropped by 27.7% (136 vs 188 patients) over the 2 weeks periods. Patient demographics, injury type and severity remained the same between the 2 groups. 51.5% (70/136) did not meet VFC pathway criteria after the intervention and were considered
Osteonecrosis is a potentially devastating condition with poorly defined pathogenesis that can affect several anatomical areas with or without a previous traumatic insult. Post traumatic osteonecrosis (PON) in the foot and ankle has been commonly described in the talus and navicular but rarely in the distal tibia. PON of the distal tibia is a rarely reported and infrequent complication of fracture dislocations of the ankle. Its scarcity can lead to misdiagnosis and
Objectives. To assess the sensitivity and specificity of self-reported osteoporosis
compared with dual energy X-ray absorptiometry (DXA) defined osteoporosis,
and to describe medication use among participants with the condition. Methods. Data were obtained from a population-based longitudinal study
and assessed for the prevalence of osteoporosis, falls, fractures
and medication use. DXA scans were also undertaken. Results. Overall 3.8% (95% confidence interval (CI) 3.2 to 4.5) of respondents
and 8.8% (95% CI 7.5 to 10.3) of those aged ≥ 50 years reported
that they had been diagnosed with osteoporosis by a doctor. The
sensitivity (those self-reporting osteoporosis and having low bone
mineral density (BMD) on DXA) was low (22.7%), although the specificity
was high (94.4%). Only 16.1% of those aged ≥ 50 years and with DXA-defined
osteoporosis were taking bisphosphonates. Conclusions. The sensitivity of self-reporting to identify osteoporosis is
low. Anti-osteoporotic medications are an important part of osteoporosis
treatment but opportunities to use appropriate medications were
missed and
Background. Treatment of cartilage defects requires in vitro expansion of human articular chondrocytes (HACs) for autologous chondrocyte implantation (ACI). During standard expansion culture (i.e. plasma osmolarity, 280 mOsm) chondrocytes inevitably lose their specific phenotype (i.e. collagen type II (COL2) expression). This de-differentiation makes them
As cartilage has poor intrinsic repair capacity, in vitroexpansion of human articular chondrocytes (HACs) is required for cell-based therapies to treat cartilage pathologies. During standard expansion culture (i.e. plasma osmolarity, 280 mOsm) chondrocytes inevitably lose their specific phenotype and de-differentiate, which makes them
Total ankle replacement (TAR) is the main surgical option in case of severe joint osteoarthritis. The high failure rate of current TAR is often associated to
Summary Statement. Increased Dkk-1 signaling is associated with OA occurrence and joint microenvironment damage. Interruption of Dkk1 action is beneficial to improve OA knees. Introduction. Osteoarthritis (OA) is a leading cause of disability and healthcare financial burden for total knee arthroplasty, rehabilitation, and disability.
Knee injuries in cyclists are often thought to result from an imbalance of load during the cycling motion as a consequence of
Summary Statement. The tensile properties of a number of synthetic fibre constructs and porcine MCLs were experimentally determined and compared to allow the selection of an appropriate synthetic collateral ligament model for use in a kinematic knee simulator. Introduction. As patient expectations regarding functional outcomes of total knee arthroplasty rise the need to assess the kinematics of new implants in vitro has increased. This has traditionally been done using cadaveric models, which can demonstrate high physiological relevance but also substantial inter-specimen variability. More recently there has been a shift towards the use of in silico and non-cadaveric methods. Such methods require significant simplifications of the joint and the modelling of soft tissue structures such as the collateral ligaments. Collateral ligaments are often modelled in in silico studies but have not, in the published literature, been modelled in in vitro knee kinematic simulators. Tensile testing of ligament tissue, to provide reference data, and the subsequent analysis of potential synthetic analogues was carried out. The overall aim of the study was to develop a synthetic ligament analogue for use in kinematic knee simulators. Methods. Porcine MCLs were chosen as these are of a similar size and are a readily available alternative to human ligaments. Six porcine knee specimens were sourced and the MCLs dissected by an orthopaedic registrar. Testing was carried out on an Instron MTS fitted with a 5kN load cell. Each specimen was subjected to 5 pre-conditioning loading cycles before cross-sectional and length measurements were made. Each specimen was then cyclically loaded from 0–200N for 30 cycles before being loaded to failure at a rate of 100mm/min. Ten potential synthetic analogues were also assessed using the same procedure: the Lars 80 (Corin Ltd) synthetic ligament reconstruction system and a selection of readily available synthetic constructs. Results. The porcine specimens demonstrated 6% ± 1% strain (mean ± standard error) after 30 cycles of loading, and a tensile stiffness of 100 N/mm ± 8.9 N/mm. The results of the load to failure tests also indicated a substantial toe region and highlighted the substantial variability associated with cadaveric specimens. The Lars system demonstrated a tensile stiffness of nearly 9 times that of the porcine specimens. However, non-parametric Mann-Whitney U analyses indicated that three of the synthetic samples did not have statistically significantly different tensile stiffness values compared to the porcine specimens (p < 0.05). Of these samples, the polyester braided cord demonstrated the longest and most physiologically relevant toe region. All of the polyester load-displacement traces fell within the range demonstrated by the porcine specimens. Discussion/Conclusion. The tensile properties of the porcine specimens analysed were similar to those reported in in the literature for human ligaments1. Porcine MCLs are thus a fair model of human collateral ligaments and were a suitable reference material for the selection of a synthetic analogue. The tensile testing carried out in the present study indicated that commercially available synthetic ligaments are over engineered in terms of strength and
Introduction. Civilian fractures have been extensively studied with in an attempt to develop classification systems, which guide optimal fracture management, predict outcome or facilitate communication. More recently, biomechanical analyses have been applied in order to suggest mechanism of injury after the traumatic insult, and predict injuries as a result of a mechanism of injury, with particular application to the field so forensics. However, little work has been carried out on military fractures, and the application of civilian fracture classification systems are fraught with error. Explosive injuries have been sub-divided into primary, secondary and tertiary effects. The aim of this study was to 1. determine which effects of the explosion are responsible for combat casualty extremity bone injury in 2 distinct environments; a) in the open and b) enclosed space (either in vehicle or in cover) 2. determine whether patterns of combat casualty bone injury differed between environments Invariably, this has implications for injury classification and the development of appropriate mitigation strategies. Method. All ED records, case notes, and radiographs of patients admitted to the British military hospital in Afghanistan were reviewed over a 6 month period Apr 08-Sept 08 to identify any fracture caused by an explosive mechanism. Paediatric cases were excluded from the analysis. All radiographs were independently reviewed by a Radiologist, a team of Military Orthopaedic Surgeons and a team of academic Biomechanists, in order to determine the fracture classification and predict the mechanism of injury. Early in the study it became clear that due to the complexity of some of the injuries it was
Meniscal injuries are often associated with an active lifestyle. The damage of meniscal tissue puts young patients at higher risk of undergoing meniscal surgery and, therefore, at higher risk of osteoarthritis. In this study, we undertook proof-of-concept research to develop a cellularized human meniscus by using 3D bioprinting technology. A 3D model of bioengineered medial meniscus tissue was created, based on MRI scans of a human volunteer. The Digital Imaging and Communications in Medicine (DICOM) data from these MRI scans were processed using dedicated software, in order to obtain an STL model of the structure. The chosen 3D Discovery printing tool was a microvalve-based inkjet printhead. Primary mesenchymal stem cells (MSCs) were isolated from bone marrow and embedded in a collagen-based bio-ink before printing. LIVE/DEAD assay was performed on realized cell-laden constructs carrying MSCs in order to evaluate cell distribution and viability.Objectives
Methods
The aim of this study was to systematically review the literature on measurement of muscle strength in patients with femoroacetabular impingement (FAI) and other pathologies and to suggest guidelines to standardise protocols for future research in the field. The Cochrane and PubMed libraries were searched for any publications using the terms ‘hip’, ‘muscle’, ‘strength’, and ‘measurement’ in the ‘Title, Abstract, Keywords’ field. A further search was performed using the terms ‘femoroacetabular’ or ‘impingement’. The search was limited to recent literature only.Objectives
Methods
We sought to determine if a durable bilayer implant composed of trabecular metal with autologous periosteum on top would be suitable to reconstitute large osteochondral defects. This design would allow for secure implant fixation, subsequent integration and remodeling. Adult sheep were randomly assigned to one of three groups (n = 8/group): 1. trabecular metal/periosteal graft (TMPG), 2. trabecular metal (TM), 3. empty defect (ED). Cartilage and bone healing were assessed macroscopically, biochemically (type II collagen, sulfated glycosaminoglycan (sGAG) and double-stranded DNA (dsDNA) content) and histologically.Objectives
Materials and Methods
“Virtual fracture clinics” have been reported as a safe and effective alternative to the traditional fracture clinic. Robust protocols are used to identify cases that do not require further review, with the remainder triaged to the most appropriate subspecialist at the optimum time for review. The objective of this study was to perform a “top-down” analysis of the cost effectiveness of this virtual fracture clinic pathway. National Health Service financial returns relating to our institution were examined for the time period 2009 to 2014 which spanned the service redesign.Objectives
Methods