Advertisement for orthosearch.org.uk
Results 1 - 20 of 99
Results per page:
Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_7 | Pages 140 - 140
4 Apr 2023
Fry M Ren W Bou-Akl T Wu B Cizmic Z Markel D
Full Access

Extensor mechanism and abductor reconstructions in total joint arthroplasty are problematic. Growing tendon into a metallic implant would have great reconstructive advantages. With the introduction of porous metal implants, it was hoped that tendons could be directly attached to implants. However, the effects of the porous metal structure on tissue growth and pore penetration is unknown. In this rat model, we investigated the effect of pore size on tendon repair fixation using printed titanium implants with differing pore sizes. There were four groups of six Sprague Dawley rats (n = 28) plus control (n=4). Implants had pore sizes of 400µm (n=8), 700µm (n=8), and 1000µm (n=8). An Achilles tendon defect was created, and the implant positioned and sutured between the cut ends. Harvest occurred at 12-weeks. Half the specimens underwent tensile load to failure testing, the other half fixed and processed for hard tissue analysis. Average load to failure was 72.6N for controls (SD 10.04), 29.95N for 400µm (SD 17.95), 55.08N for 700µm (SD 13.47), and 63.08N for 1000µm (SD 1.87). The load to failure was generally better in the larger pore sizes. Histological evaluation showed that there was fibrous tendon tissue within and around the implant material, with collagen fibers organized in bundles. This increases as the pore diameter increases. Printing titanium implants allows for precise determination of pore size and structure. Our results showed that tendon repair utilizing implants with 700µm and 1000µm pores exhibited similar load to failure as controls. Using a defined pore structure at the attachment points of tendons to implants may allow predictable tendon to implant reconstruction at the time of revision arthroplasty


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_13 | Pages 140 - 140
1 Nov 2021
Reifenrath J Kempfert M Kampmann A Angrisani N Glasmacher B Menzel H Welke B Willbold E
Full Access

Introduction and Objective. In the elderly population, chronic rotator cuff tears are often associated with high re-rupture rates after surgical tendon refixation. Implant materials, especially in combination with additives are supposed to positively influence healing outcome. Furthermore, adequate mechanical properties are crucial. In order to realize degradable implants with high specific surface area, polycaprolactone (PCL) was chosen as basic material and processed by electrospinning to achieve a high surface area for growth factor implementation and subsequent cell attachment. Materials and Methods. PCL (M. n. approx. 80,000 g/mol) was used to generate fibre mats by electrospinning (relative collector velocity 8 m/s; flow rate of 4 ml/h). Mechanical analysis was performed according to EN ISO 527–2:2012 with test specimen 1BA (5 mm in diameter). Maximum force at failure (Fmax) as well as stiffness were evaluated. For preclinical in vivo testing, a coating with CS-g-PCL was performed to increase cellular adhesion and biological integration. Native and TGF-ß3 loaded mats were examined in a chronic rat tendon defect model with dissection of the M. infraspinatus, four week latency and following refixation at the humerus with different PCL-fibre mats (approval Nr. 33.12–42502–04–15/2015). After 8 weeks, rats were finalized and tendon-bone insertions were analyzed biomechanically and via histological methods. Results. Electrospun PCL-fibre mats (n = 6) showed maximum forces of 2.19 ± 0.8 N and a stiffness of 0.38 ± 0.12 N/mm. Native rat infraspinatus tendons showed Fmax values of 28.4 ± 7.2 N and a stiffness of 11.8 ± 4.9 N/mm. After implantation, Fmax of the implant-tendon-regenerate was significantly lower in CS-g-PCL - fibre mat groups compared to native control tendons (mean 52 % of native tendon value). Functionalization with TGF-ß3 led to increased Fmax (78 % of the native tendon value). However, differences were not statistically significant. Histological evaluation revealed no differences between non loaded and TGF-ß3 loaded mats. The implants were strongly disintegrated. Granulation tissue and a high number of foreign body giant cells were present. Conclusions. Although mechanical properties of fabricated mats were low, loading of the fibre mats influenced the biomechanical outcome of refixed tendons, presumably due to their high potential for binding biological active substances like TGF-ß3. However, in ongoing studies these cell reactions, especially regarding polarization of macrophages and foreign body cells need to be characterized. This research project has been supported by the German Research Foundation “Graded Implants FOR 2180 – tendon- and bone junctions” WE 4262/6-2 and parts were published in J Tissue Eng Regen Med. 2020 Jan;14(1):186–197. doi: 10.1002/term.2985


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_11 | Pages 7 - 7
1 Dec 2020
Jahr H Li Y Pavanram P Lietaert K Schenkel J Leeflang M Zhou J Pufe T Zadpoor AA
Full Access

Bioabsorbable metals hold a lot of potential as orthopaedic implant materials. Three metal families are currently being investigated: iron (Fe), magnesium (Mg) and zinc (Zn). Currently, however, biodegradation of such implants is poorly predictable. We thus used Direct Metal Printing to additively manufacture porous implants of a standardized bone-mimetic design and evaluated their mechanical properties and degradation behaviour, respectively, under in vivo-like conditions. Atomized powder was manufactured to porous implants of repetitive diamond unit cells, using a ProX DMP 320 (Layerwise, Belgium) or a custom-modified ReaLizer SLM50 metal printer. Degradation behaviour was characterized under static and dynamic conditions in a custom-built bioreactor system (37ºC, 5% CO. 2. and 20% O. 2. ) for up of 28 days. Implants were characterized by micro-CT before and after in vivo-like degradation. Mechanical characterization (according to ISO 13314: 2011) was performed on an Instron machine (10kN load cell) at different immersion times in simulated body fluid (r-SBF). Morphology and composition of degradation products were analysed (SEM, JSM-IT100, JEOL). Topographically identical titanium (Ti-6Al-4V, Ti64) specimen served as reference. Micro-CT analyses confirmed average strut sizes (420 ± 4 μm), and porosity (64%), to be close to design values. After 28 days of in vivo-like degradation, scaffolds were macroscopically covered by degradation products in an alloy-specific manner. Weight loss after cleaning also varied alloy-specifically, as did the change in pH value of the r-SBF. Corrosion time-dependent changes in Young's moduli from 1200 to 800 MPa for Mg, 1000 to 700 MPa for Zn and 48-8 MPa for iron were statistically significant. In summary, DMP allows to accurately control interconnectivity and topology of implants from all three families and micro-structured design holds potential to optimize their degradation speed. This first systematic report sheds light into how design influences degradation behaviour under in vivo-like conditions to help developing new standards for future medical device evaluation


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_7 | Pages 123 - 123
4 Apr 2023
Leggi L Terzi S Asunis E Gasbarrini A
Full Access

Infections in spine surgery are relatively common and devastating complications, a significant burden to the patient and the healthcare system. Usually, the treatment of SSIs consists of aggressive and prolonged antibiotic therapy, multiple debridements, and in chronic cases, hardware removal. Infections are correlated with worse subjective outcomes and even higher mortality.

Depending on the type of spine surgery, the infection rate has been reported to be as higher as 20%. Recently silver-coated implants have been introduced in spine surgery to reduce the incidence of post-operative infections and to improve implant survivorship.

The aim of the present study is to evaluate complications and outcomes in patients treated with silver-coated implants because of spine infection.

All consecutive patients who had spine stabilization with a silver-coated implant from 2018 to 2021 were screened for inclusion in the study. Inclusion criteria were: (1) six months of minimum follow-up; (2) previous surgical site infection; hematogenous spondylodiscitis requiring surgical stabilization. Demographic and surgical information were obtained via chart review, all the device-related complications and the reoperation rate were also reported.

A total of 57 patients were included in the present study. The mean age was 63.4 years, and there were 36 (63%) males and 21 (37%) females. Among the included cases, 57% were SSIs, 33% were spondylodiscitis, and 9% were hardware mobilization.

Comorbidities such as diabetes mellitus, obesity, smoke, and oncological history were significant risk factors. In addition, the organisms cultured were Staphylococcus species in most of the cases. At six months of follow-up, 40% of patients were considered free from infection, while 20% needed multiple surgeries.

The present research showed satisfactory results of silver-coated implants for the treatment of spine infection.


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_2 | Pages 131 - 131
2 Jan 2024
Vadalà G
Full Access

Infections are among the most diffused complications of the implantation of medical devices. In orthopedics, they pose severe societal and economic burden and interfere with the capability of the implants to integrate in the host bone, significantly increasing failure risk. Infection is particularly severe in the case of comorbidities and especially bone tumors, since oncologic patients are fragile, have higher infection rate and impaired osteoregenerative capabilities. For this reason, prevention of infection is to be preferred over treatment.

This is even more important in the case of spine surgery, since spine is among the main site for tumor metastases and because incidence of post operative surgical-site infections is significant (up to 15-20%) and surgical options are limited by the need of avoiding damaging the spinal cord.

Functionalization of the implant surfaces, so as to address infection and, possibly, co- adjuvate anti-tumor treatments, appears as a breakthrough innovation. Unmet clinical needs in infection and tumors is presented, with a specific focus on the spine, then, new perspectives are highlighted for their treatment.


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_1 | Pages 17 - 17
2 Jan 2024
Wildemann B
Full Access

The Global Burden of Disease Study 2019 showed a 33.4% increase in fractures and a 65.3% increase in Years lived with disability (YLD) since 1990. Although the overall rate of fracture related infection (FRI) is low, it increases to 30% in complex fractures. In addition, the implantation of foreign materials, such as fracture stabilizing implants, decreases the number of bacteria needed to cause an infection. Then, when infections do occur, they are difficult to treat and often require multiple surgeries to heal. The bacteria can persist in the canaliculi of the bony tissue, in cells, in a biofilm on material or necrotic bone or in abscess communities. In the last decades, different approaches have been pursued to modify biomaterials as well as implant surface and to develop antimicrobial surfaces or local drug release strategies. This talk will give an introduction to the problem of bony and implant associated infections and presents the development and preclinical (as well as clinical) studies of two approaches for local drug delivery.


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_2 | Pages 9 - 9
2 Jan 2024
Ma H Lei B Zhang Y
Full Access

3D Printed polyether-ether-ketone (PEEK) has gained widespread use in clinical practice due to its excellent biocompatibility, biomechanical compatibility, and personalization. However, pre-printed PEEK implants are not without their flaws, including bioinert, optimization distortion of 3D printing digital model and prosthetic mismatching. Recent advancements in mechanical processing technology have made it possible to print bone implants with PEEK fused deposition, allowing for the construction of mechanically adaptable implants. In this study, we aimed to synthesize silanized polycitrate (PCS) via thermal polymerization and in situ graft it to PEEK surface to construct an elastomer coating for 3D printed PEEK implants (PEEK-PCS). This incorporation of PCS allows the implant to exhibit adaptive space filling ability and stress dispersal. In vivo and in vitro results, PEEK-PCS exhibited exceptional osseointegration and osteogenesis properties along with macrophage M2 phenotypic polarization, inflammatory factors reducing, promotion of osteogenic differentiation in bone marrow mesenchymal stem cells (BMSCs). Additionally, PEEK-PCS displays good autofluorescence properties in vitro and in vivo, with stable fluorescence for 14 days, suggesting potential bioimaging applications. The study confirms that PEEK in situ grafting with thermo-polymerized PCS elastomers is a viable approach for creating multifunctional (bone defect adaptation, bioimaging, immune regulation, and osseointegration) implants for bone tissue engineering.


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_18 | Pages 82 - 82
14 Nov 2024
Kühl J Grocholl J Seekamp A Klüter T Fuchs S
Full Access

Introduction

The surgical treatment of critical-sized bone defects with complex three-dimensional (3D) geometries is a challenge for the treating surgeon. Additive manufacturing such as 3D printing enables the production of highly individualized bone implants meeting the shape of the patient's bone defect and including a tunable internal structure. In this study, we showcase the design process for patient-specific implants with critical-sized tibia defects.

Methods

Two clinical cases of patients with critical tibia defects (size 63×20×21 mm and 50×24×17 mm) were chosen. Brainlab software was used for segmentation of CT data generating 3D models of the defects. The implant construction involves multiple stages. Initially, the outer shell is precisely defined. Subsequently, the specified volume is populated with internal structures using Voronoi, Gyroid, and NaCl crystal structures. Variation in pore size (1.6 mm and 1.0 mm) was accomplished by adjusting scaffold size and material thickness.


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_1 | Pages 58 - 58
2 Jan 2024
Richter B
Full Access

An overview about 3D printing technology in orthopaedic applications will be given based on examples. The process from early prototypes to certified implants coming from serial production will be demonstrated also considering relevant surrounding conditions. Today's focus is mostly on orthopaedic implants, but there is a high potential for new implant-related surgical instrument solutions taking into account up-coming clinical demands and user needs accessible by actual 3D printing technologies.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_8 | Pages 120 - 120
11 Apr 2023
Hettich G Weiß J Grupp T
Full Access

In severe cases of total knee arthroplasty which cannot be treated with off-the-shelf implants anymore custom-made knee implants may serve as one of the few remaining options to restore joint function or to prevent limb amputation. Custom-made implants are specifically designed and manufactured for one individual patient in a single-unit production, in which the surgeon is responsible for the implant design characteristics in consultation with the corresponding engineer.

The mechanical performance of these custom-made implants is challenging to evaluate due to the unique design characteristics and the limited time until which the implant is needed. Nevertheless, the custom-made implant must comply with clinical and regulatory requirements. The design of custom-made implants is often based on a underlying reference implant with available biomechanical test results and well-known clinical performance. To support surgeons and engineers in their decision whether a specific implant design is suitable, a method is proposed to evaluate its mechanical performance.

The method uses finite element analysis (FEA) and comprises six steps: (1) Identification of the main potential failure mechanism and its corresponding FEA quantity of interest. (2) Reproduction of the biomechanical test of the reference implant via FEA. (3) Identification of the maximum value of the corresponding FEA quantity of interest at the required load level. (4) Definition of this value as the acceptance criteria for the FEA of the custom-made implant. (5) Reproduction of the biomechanical test with the custom-made implant via FEA. (6) Conclusion whether the acceptance criteria is fulfilled or not.

The method was applied to two exemplary cases of custom-made knee implants. The FEA acceptance criteria derived from the reference implants were fulfilled in both custom-made implants. Subsequent biomechanical tests verified the FEA results.

This study suggests and applies a non-destructive and efficient method for pre-clinical testing of a single-unit custom-made knee implant to evaluate whether the design is mechanically suitable.


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_2 | Pages 132 - 132
2 Jan 2024
Rau J
Full Access

Over the last decades, biodegradable metals emerged as promising materials for various biomedical implant applications, aiming to reduce the use of permanent metallic implants and, therefore, to avoid additional surgeries for implant removal. However, among the important issue to be solved is their fast corrosion - too high to match the healing rate of the bone tissue. The most effective way to improve this characteristic is to coat biodegradable metals with substituted calcium phosphates. Tricalcium phosphate (β-TCP) is a resorbable bioceramic widely used as synthetic bone graft. In order to modulate and enhance its biological performance, the substitution of Ca2+ by various metal ions, such as strontium (Sr2+), magnesium (Mg2+), iron (Fe2+) etc., can be carried out. Among them, copper (Cu2+), manganese (Mn2+), zinc (Zn2+) etc. could add antimicrobial properties against implant-related infections. Double substitutions of TCP containing couples of Cu2+/Sr2+ or Mn2+/Sr2+ ions are considered to be the most perspective based on the results of our study. We established that single phase Ca3−2x(MˊMˊˊ)x(PO4)2 solid solutions are formed only at x ≤ 0.286, where Mˊ and Mˊˊ—divalent metal ions, such as Zn2+, Mg2+, Cu2+, Mn2+, and that in case of double substitutions, the incorporation of Sr2+ ions allows one to extend the limit of solid solution due to the enlargement of the unit cell structure. We also reported that antimicrobial properties depend on the substitution ion occupation of Ca2+ crystal sites in the β-TCP structure. The combination of two different ions in the Ca5 position, on one side, and in the Ca1, Ca2, Ca3, and Ca4 positions, on another side, significantly boosts antimicrobial properties. In the present work, zinc-lithium (Zn-Li) biodegradable alloys were coated with double substituted Mn2+/Sr2+ β-TCP and double substituted Cu2+/ Sr2+ β-TCP, with the scope to promote osteoinductive effect (due to the Sr2+ presence) and to impart antimicrobial properties (thanks to Cu2+ or Mn2+ ions). The Pulsed Laser Deposition (PLD) method was applied as the coating's preparation technique. It was shown that films deposited using PLD present good adhesion strength and hardness and are characterized by a nanostructured background with random microparticles on the surface. For coatings characterization, Fourier Transform Infrared Spectroscopy, X-ray Diffraction, and Scanning Electron Microscopy coupled with Energy Dispersive X-ray and X-ray Photoelectron Spectroscopy were applied. The microbiology tests on the prepared coated Zn-Li alloys were performed with the Gram-positive (Staphylococcus aureus, Enterococcus faecalis) and Gram-negative (Salmonella typhimurium, Escherichia coli) bacteria strains and Candida albicans fungus. The antimicrobial activity tests showed that Mn2+/Sr2+ β-TCP -coated and Cu2+/Sr2+ β-TCP coated Zn-Li alloys were able to inhibit the growth of all five microorganisms. The prepared coatings are promising in improving the degradation behavior and biological properties of Zn-Li alloys, and further studies are necessary before a possible clinical translation.


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_18 | Pages 27 - 27
14 Nov 2024
Bulut H Giray Batibay S Kanay E Özkan K
Full Access

Introduction

Despite the implementation of numerous preventive measures in recent years, the persistent challenge of periprosthetic infections remains. Among the various strategies, metallic modification of implants, particularly with silver, has emerged as a promising avenue. Silver's antimicrobial properties, coupled with its low human toxicity, render it an appealing option. However, ongoing debate surrounds its comparative efficacy in infection prevention when contrasted with titanium-coated prostheses.

Methods

The PubMed database was systematically searched up to March 2024. Studies in English that met predetermined inclusion/exclusion criteria and utilized “Megaprosthesis AND infection” and “ silver-coated AND infection “ as key terms were included. The Preferred Reporting Items for Systematic Reviews and Meta-Analyses(PRISMA) statement guided the article selection process.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_8 | Pages 62 - 62
11 Apr 2023
Preutenborbeck M Wright P Loughran G Bishop N
Full Access

Orthopaedic impaction-instruments are used to drive implants into the bone of the patient. Pre-clinical experimental testing protocols and computer models of those are used to assess robustness and functional efficiency of such instruments. This generally involves impaction of the instrument mounted on a substrate that should represent the mechanics of the patient. In this study, the effects of the substrate on stressing of the impaction-instruments were investigated using dynamic finite element analysis. Model results were compared with experimental data from lab protocols, which have been derived to recreate the mechanics of cadaveric implantations, which represent clinical conditions.

FEA models of selected experimental protocols were created in which a simplified instrument was impacted on substrates with varying material properties and boundary conditions. After impaction, the instrument settled into a modal vibration which then decayed over time. The resulting axial strain data from the computational model was compared to strain-gauge data collected from experimental measurements. Strain signal amplitude, frequency and decay were compared. The damping-ratio was derived from the decay of the strain signal.

The computational model slightly over-predicted the initial experimental strain amplitudes in all cases, but the frequency of the cyclic strain signals matched. However, the model underestimated the experimentally measured rate of signal decay. Inclusion of implant seating and soft-tissue conditions had little effect on decay.

Clinical failures of impaction-instruments may be related to multiple fatigue cycles for each impaction and should be modelled accurately to allow failure prediction. Any soft substrate results in an impedance mismatch at the instrument interface, which reflects the pressure wave and causes vibration with a frequency related to the speed-of-sound in the instrument, and its geometry. While this could be accurately modelled computationally, signal decay was underestimated. Further experimental quantification of energy losses will be important to understand vibration decay.


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_1 | Pages 81 - 81
2 Jan 2024
Vautrin A Aw J Attenborough E Varga P
Full Access

Although 3D-printed porous dental implants may possess improved osseointegration potential, they must exhibit appropriate fatigue strength. Finite element analysis (FEA) has the potential to predict the fatigue life of implants and accelerate their development. This work aimed at developing and validating an FEA-based tool to predict the fatigue behavior of porous dental implants.

Test samples mimicking dental implants were designed as 4.5 mm-diameter cylinders with a fully porous section around bone level. Three porosity levels (50%, 60% and 70%) and two unit cell types (Schwarz Primitive (SP) and Schwarz W (SW)) were combined to generate six designs that were split between calibration (60SP, 70SP, 60SW, 70SW) and validation (50SP, 50SW) sets.

Twenty-eight samples per design were additively manufactured from titanium powder (Ti6Al4V). The samples were tested under bending compression loading (ISO 14801) monotonically (N=4/design) to determine ultimate load (Fult) (Instron 5866) and cyclically at six load levels between 50% and 10% of Fult (N=4/design/load level) (DYNA5dent). Failure force results were fitted to F/Fult = a(Nf)b (Eq1) with Nf being the number of cycles to failure, to identify parameters a and b. The endurance limit (Fe) was evaluated at Nf = 5M cycles. Finite element models were built to predict the yield load (Fyield) of each design. Combining a linear correlation between FEA-based Fyield and experimental Fult with equation Eq1 enabled FEA-based prediction of Fe.

For all designs, Fe was comprised between 10% (all four samples surviving) and 15% (at least one failure) of Fult. The FEA-based tool predicted Fe values of 11.7% and 12.0% of Fult for the validation sets of 50SP and 50SW, respectively. Thus, the developed FEA-based workflow could accurately predict endurance limit for different implant designs and therefore could be used in future to aid the development of novel porous implants.

Acknowledgements: This study was funded by EU's Horizon 2020 grant No. 953128 (I-SMarD). We gratefully acknowledge the expert advice of Prof. Philippe Zysset.


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_1 | Pages 23 - 23
2 Jan 2024
Ciatti C Quattrini F Asti C Maniscalco P
Full Access

Previous scientific studies have highlighted how coupling is an important element affecting total hip arthroplasty's survival.

This study aims to evaluate whether metal-on-metal (MOM) coupling could be a statistically significant risk factor.

The data from the regional joint registry (Registro dell'Impiantologia Protesica Ortopedica, RIPO) was used for analysis. The data collection accuracy of this registry was 97.2% in 2017.

We retrospective evaluate all MOM total hip arthroplasties (THAs) implanted in our department between January 01st 2000 and December 31st 2011. We used a control group composed by all other prosthesis implanted in our Department in the same time lapse.

We registered 660 MOM THAs. Mean age of patients was 66.9 years. 603 patients have a >36mm head, while 78 a <36 mm one. Neck modularity was present in half of patients. 676 implants were cementless. We registered 69 revisions, especially due to aseptic mobilization (16 THAs), implant breakage (9 THAs) and periprosthetic fracture (6 THAs).

The MOM THAs overall Kaplan-Meier survival rate was 87.2 at 15 years, and the difference between MOM THAs and other implants two curves is statistically significant (p<0.05). Male sex is a significant risk factors. Further evaluations are in progress to establish the presence of any additional risk factors. We think weight and/or BMI may be included in this category.

Our study confirms the data currently present in the literature regarding a lower survival of metal-on-metal hip prostheses.

The male sex is a statistically significant risk factor (p<0.05), while age, head size and modularity of the prosthetic neck are not statistically significant (p>0.05).

Any new finds will be presented at the congress venue.


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_1 | Pages 59 - 59
2 Jan 2024
Depboylu F
Full Access

Production of porous titanium bone implants is a highly promising research and application area due to providing high osseointegration and achieving the desired mechanical properties. Production of controlled porosity in titanium implants is possible with laser powder bed fusion (L- PBF) technology. The main topics of this presentation includes the L-PBF process parameter optimization to manufacture thin walls of porous titanium structures with almost full density and good mechanical properties as well as good dimensional accuracy. Moreover, the cleaning and coating process of these structures to further increase osseointegration and then in-vitro biocompatibility will be covered.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_7 | Pages 128 - 128
4 Apr 2023
Li M Wu G Liu Y
Full Access

Miniscrew implants (MSIs) are widely used to provide absolute anchorage for the orthodontic treatment. However, the application of MSIs is limited by the relatively high failure rate (22.86%). In this study, we wished to investigate the effects of amorphous and crystalline biomimetic calcium phosphate coating on the surfaces of MSIs with or without the incorporated BSA for the osteointegration process with an aim to facilitate the early loading of MSIs.

Amorphous and crystalline coatings were prepared on titanium mini-pin implants. Characterizations of coatings were examined by Scanning electron microscopy (SEM), Confocal laser-scanning dual-channel-fluorescence microscopy (CLSM) and Fourier-transform infrared spectroscopy (FTIR). The loading and release kinetics of bovine serum albumin (BSA) were evaluated by Enzyme linked immunosorbent assay (ELISA). Activity of alkaline phosphate (ALP) was measured by using the primary osteoblasts. In vivo, a model of metaphyseal tibial implantation in rats was used (n=6 rats per group). We had 6 different groups: no coating no BSA, no coating but with surface adsorption of BSA and incorporation of BSA in the biomimetic coating in the amorphous and crystalline coatings. Time points were 3 days, 1, 2 and 4 weeks. Histological and histomorphometric analysis were performed and the bone to implant contact (BIC) of each group was compared.

In vitro, the incorporation of BSA changed the crystalline coating from sharp plates into curly plates, and the crystalline coating showed slow-release profile. The incorporation of BSA in crystalline coating significantly decreased the activity of ALP in vitro. In vivo study, the earliest significant increase of BIC appeared in crystalline coating group at one week.

The crystalline coating can serve as a carrier and slow release system for the bioactive agent and accelerate osteoconductivity at early stage in vivo. The presence of BSA is not favorable for the early establishment of osteointegration.


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_16 | Pages 16 - 16
1 Dec 2021
Munford M Stoddart J Liddle A Cobb J Jeffers J
Full Access

Abstract

Objectives

Unicompartmental and total knee arthroplasty (UKA and TKA) are successful treatments for osteoarthritis, but monolithic implants disrupt the natural homeostasis of bone which leads to bone loss over time. This can cause problems if the implant needs to be revised. This study aimed to demonstrate that tibial implants made from titanium lattice could replace the tibial condyle surface while minimising disruption of the bone's natural mechanical loading environment. A secondary aim was to determine whether implants perform better if they replicate more closely bone's mechanical modulus, anisotropy and spatial heterogeneity. This study was conducted in a human cadaveric model.

Methods

In a cadaveric model, UKA and TKA procedures were performed on 8 fresh-frozen knee specimens by a board-certified consultant orthopaedic surgeon, using tibial implants made from conventional monolithic material and titanium lattice structures. Stress at the bone-implant interfaces was measured with pressure film and compared to the native knee.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_9 | Pages 74 - 74
17 Apr 2023
Theodoridis K Hall T Munford M Van Arkel R
Full Access

The success of cementless orthopaedic implants relies on bony ingrowth and active bone remodelling. Much research effort is invested to develop implants with controllable surface roughness and internal porous architectures that encourage these biological processes. Evaluation of these implants requires long-term and costly animal studies, which do not always yield the desired outcome requiring iteration. The aim of our study is to develop a cost-effective method to prescreen design parameters prior to animal trials to streamline implant development and reduce live animal testing burden.

Ex vivo porcine cancellous bone cylinders (n=6, Ø20×12mm) were extracted from porcine knee joints with a computer-numerically-controlled milling machine under sterile conditions within 4 hours of animal sacrifice. The bone discs were implanted with Ø6×12mm additive manufactured porous titanium implants and were then cultured for 21days. Half underwent static culture in medium (DMEM, 10% FBS, 1% antibiotics) at 37°C and 5% CO2. The rest were cultured in novel high-throughput stacked configuration in a bioreactor that simulated physiological conditions after surgery: the fluid flow and cyclic compression force were set at 10ml/min and 10–150 N (1Hz,5000 cycles/day) respectively. Stains were administered at days 7 and 14. Samples were evaluated with widefield microscopy, scanning electron microscopy (SEM) and with histology.

More bone remodelling was observed on the samples cultured within the bioreactor: widefield imaging showed more remodelling at the boundaries between the implant-bone interface, while SEM revealed immature bone tissue integration within the pores of the implant. Histological analysis confirmed these results, with many more trabecular struts with new osteoid formation on the samples cultured dynamically compared to static ones.

Ex vivo bone can be used to analyse new implant technologies with lower cost and ethical impact than animal trial. Physiological conditions (load and fluid flow) promoted bone ingrowth and remodelling.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_9 | Pages 63 - 63
17 Apr 2023
MacLeod A Dal Fabbro G Grassi A Belvedere C Nervuti G Casonato A Leardini A Gil H Zaffagnini S
Full Access

High tibial osteotomy (HTO) is a joint preserving alternative to knee replacement for medial tibiofemoral osteoarthritis in younger, more active patients. The procedure is technically challenging and limited also by ‘one size fits all’ plates which can result in patient discomfort necessitating plate removal.

This clinical trial evaluated A novel custom-made HTO system – TOKA (3D Metal Printing LTD, Bath, UK) for accuracy of osteotomy correction and improvements in clinical outcome scores.

The investigation was a single-arm single-centre prospective clinical trial (IRCCS Istituto Ortopedico Rizzoli; ClinicalTrials.gov NCT04574570), with recruitment of 25 patients (19M/6F; average age: 54.4 years; average BMI: 26.8), all of whom received the TOKA HTO 3D planning and surgery. All patients were predominantly diagnosed with isolated medial knee osteoarthritis and with a varus deformity under 20°. Patients were CT scanned pre- and post-operatively for 3D virtual planning and correctional assessment. All surgeries were performed by the lead clinical investigator – a consultant knee surgeon with a specialist interest in and clinical experience of HTO.

On average, Knee Society Scores (KSS) improved significantly (p<0.001) by 27.6, 31.2 and 37.2 percentage points respectively by 3-, 6- and 12-months post-surgery respectively. Other measures assessed during the study (KOOS, EQ5D) produced similar increases.

Our early experience using custom implants is extremely promising. We believe the reduced profile of the plate, as well as the reduced invasiveness and ease of surgery contributed to faster patient recovery, and improved outcome scores compared to conventional techniques. These clinical outcome results compare very favourably other case-series with published KOOS scores using different devices.