Study Aim. Femoral components used in total knee arthroplasty (TKA) are primarily designed on the basis of kinematics and ease of fixation. This study considers the stress-strain environment in the distal femur due to different implant internal geometry variations (based on current industry standards) using finite element (FE) analyses. Both two and three dimensional models are considered for a range of physiological loading scenarios – from full extension to deep flexion. Issues associated with micro-motion at the bone-implant interface are also considered. Materials and methods. Two (plane strain) and three dimensional finite element analyses were conducted to examine implant micro-motions and stability. The simple 2D models were used to examine the influence of anterior-posterior (AP) flange angle on
In vitro femoral studies have demonstrated the addition of hydroxyapatite (HA), to morcellised bone graft (MBG) decreases femoral prosthesis subsidence. However, with an increased risk of femoral fracture during the impaction of a MBG:HA mixture, possibly due to greater force transmission to the femoral cortex via the HA. The aim was to compare the hoop strains and subsidence of a 1:1 mixture of MBG:HA with pure bone allograft during impaction and subsequent endurance testing in a revision hip arthroplasty model. Materials and methods Large Sawbone femurs were prepared to represent a femur with bone loss (Sawbones, Sweden). 12 uniaxial strain gauges were attached to each femur at 0, 90, 180 and 270 degrees, at distal, midshaft, proximal points to measure hoop strain. Impaction grafting was performed using X-Change 2 instruments and an Instron servohydaulic machine for 2 distal impactions and 4 proximal impactions for 60 impactions each. The study consisted of four experimental groups: 1)Pure MBG, force of 1.98 kN 2)Pure MBG, force 3.63kN. 3)1:1 mixture of MBG: porous HA (pHA), 4)1:1 mixture MBG: non porous HA (npHA). 6 samples of each group were performed. The potted femur was loaded in a manner representing the walking cycle (1.98kN) at 1 Hz for 50 000 cycles. The displacement of the femoral head during loading was measured by two displacement transducers (LVDT) were mounted on aluminum brackets to measure vertical displacement and rotation.Study groups
Endurance testing
Primary
3D-printed orthopedic implants have been gaining popularity in recent years due to the control this manufacturing technique gives the designer over the different design aspects of the implant. This technique allows us to manufacture implants with material properties similar to bone, giving the implant designer the opportunity to address one of the main complications experienced after total hip arthroplasty (THA), i.e. aseptic loosening of the implant. To restore proper function after implant loosening, the implant needs to be replaced. During these revision surgeries, some extra bone is removed along with the implant, further increasing the already present defects, and making it harder to achieve proper mechanical stability with the revision implant. A possible way to limit the increasing loss of bone is the use of biodegradable orthopedic implants that optimize long-term
Abstract. Objectives. Obesity is prevalent with nearly one third of the world's population being classified as obese. Total knee arthroplasty (TKA) is an effective treatment option for high BMI patients achieving similar outcomes to non-obese patients. However, increased rates of aseptic loosening in patients with a high BMI have been reported. In patients with high BMI/body mass there is an increase in strain placed on the implant fixation interfaces. As such component fixation is a potential concern when performing TKA in the obese patient. To address this concern the use of extended tibial stems in cemented implants or cementless fixation have been advocated. Extend tibial stems are thought to improve
To date, the fixation of proximal humeral fractures with angular stable locking plates is still insufficient with mechanical failure rates of 18% to 35%. The PHILOS plate (DePuy Synthes, Switzerland) is one of the most used implants. However, this plate has not been demonstrated to be optimal; the closely symmetric plate design and the largely heterogeneous bone mineral density (BMD) distribution of the humeral head suggest that the primary
Introduction. Achieving an appropriate primary
Introduction and Objective. The patients with a total hip arthroplasty is growing in world manly in Europe and USA, and this solution present a high success at 10years in several orthopaedic registers. The application of total press-fit hip fixation presents the most used solution, but presents some failures associated to the acetabular component fixation, associated to the load transfer and bone loss at long term. The aim of this work is to investigate the influence of different acetabular bone loss in the strain distribution in iliac bone. To evaluate implant fixation, an experimental study was performed using acetabular press-fit component simulating different acetabular bone loss and measuring the strain distribution. Materials and Methods. The experimental samples developed was based in an iliac bone model of Sawbones supplier and a acetabular component Titanium (Stryker) in a condition press-fit fixation and was implanted according surgical procedure with 45º inclination angle and 20º in the anteversion angle. Were developed five models with same initial bone, one with intact condition simulating the cartilage between bones and four with different bone loss around the acetabular component. These four models representing the evolution of bone support of acetabular components presented in the literature. The evolution of bone loss was imposed with a CAD CAM process in same iliac bone model. The models were instrumented with 5 rosettes in critical region at the cortical bone to measure the strain evolution along the process. Results. The results of strain gauges present the influence of acetabular component implantation, reducing the bone strains and presented the effect of the strain shielding. The acetabular component works as a shield in the load transfer. The critical region is the posterior region with highest principal strains and the strain effect was observed with different bone loss around acetabular component. The maximum value of principal strain was observed in the intact condition in the anterior region, with 950μ∊. In the posterior superior region, the effect of bone loss is more important presenting a reduction of 500% in the strains. The effect of bone loss is presented in the strains induced with acetabular implantation, in the first step of implantation the maximum strain was 950μ∊ and in the last model the value was 50μ∊, indicating lower press-fit fixation. Conclusions. The models developed allows study the effect of bone loss and acetabular implant fixation in the load transfer at the hip articulation. The results presented a critical region as the anterior-superior and the effect of strain shielding was observed in comparison with intact articulation. The results of press-fit fixation present a reduction of
Abstract. Objective. To compare the periprosthetic fracture mechanics between a collared and collarless fully coated cementless femoral stem in a composite femur. Methods. Two groups of six composite femurs (‘Osteoporotic femur’, SawBones, WA USA) were implanted with either a collared (collared group) or collarless (collarless group) cementless femoral stem which was otherwise identical by a single experienced surgeon. Periprosthetic fractures of the femur were simulated using a previously published technique. High speed video recording was used to identify fracture mechanism. Fracture torque and angular displacement were measured and rotational work and system stiffness were estimated for each trial. Results were compared between collared and collarless group and the comparison was evaluated against previously published work using fresh frozen femurs and the same protocol. Results. In composite femur testing median fracture torque (IQR) was greater with a collared versus collarless implant (48.41 [42.60 to 50.27] Nm versus 45.12 [39.13 to 48.09] Nm, p= 0.4). Median rotational displacement (IQR) was less with a collared versus collarless implant (0.29 [0.27 to 0.31] radians versus 0.33 [0.32 to 0.34] radians, p= 0.07). Estimated rotary work was similar between groups (5.76 [4.92 to 6.64] J versus 5.21 [4.25 to 6.04] J, p= 0.4). Torsional stiffness was greater with a collared versus collarless implant (158.36 [152.61, 163.54] Nm per radian versus 138.79 [122.53, 140.59] Nm per radian, p= 0.5). Collarless stems were seen to move independently of the femur and fracture patterns originated at the calcar. Conclusions. Testing with composite femurs using an established protocol produced similar results to previously published studies using human femurs, but the difference between collared and collarless stems was smaller. The internal homogenous foam material in composite femurs does not accurately represent the heterogeneous cancellous bone which supports a femoral stem in vivo and may lead to overestimation of
Pulsed electromagnetic fields (PEMFs) have been considered a potential treatment modality for fracture healing. As bone fracture healing and osseointegration share the same biological events, the application of PEMF stimulation to facilitate the osseointegration process of orthopedic implants has been suggested. However, the mechanism of their action remains unclear. Mammalian target of rapamycin (mTOR) signaling may affect osteoblast proliferation and differentiation. This study aimed to assess the osteogenic differentiation of mesenchymal stem cells (MSCs) under PEMF stimulation and the potential involvement of mTOR signaling pathway in this process. PEMFs were generated by a novel miniaturized electromagnetic device (MED). Potential changes in the expression of mTOR pathway components, including receptors, ligands and nuclear target genes, and their correlation with osteogenic markers and transcription factors were analyzed. PEMF exposure increased cell proliferation, adhesion and osteogenic commitment of MSCs. Osteogenic-related genes were over-expressed following PEMF treatment. Our results confirm that PEMFs contribute to activation of the mTOR pathway via upregulation of the proteins AKT, MAPP kinase, and RRAGA, suggesting that activation of the mTOR pathway is required for PEMF-stimulated osteogenic differentiation. In summary, the findings of the present study revealed that MED-generated PEMFs stimulate osteogenic differentiation and the maturation of the adipose tissue-derived MSCs via activation of the mTOR pathways. Even though further research is required to determine an optimal stimulation timing and flux density both in-vitro and in-vivo, this study results may serve a source for an adjuvant therapy to improve orthopedic
Orbital floor (OF) fractures are commonly treated by implanting either bioinert titanium or polyethylene implants, or by autologous grafts. A personalized implant made of biodegradable and osteopromotive poly(trimethylene carbonate) loaded with hydroxyapatite (PTMC-HA) could be a suitable alternative for patients where a permanent implant could be detrimental. A workflow was developed from the implant production using stereolithography (SLA) based on patient CT scan to the implantation and assessment its performance (i.e.
Tibial bone density may affect
Modular femoral stems for total hip arthroplasty (THA) were introduced to allow additional options for surgeons in controlling leg lengths, offset, and
Background.
Summary. Despite high revision rates, the mean two year migration of the ASR. TM. cup is within an acceptable threshold. Slightly higher migration rates found for the M2a- Magnum™ Porous Coated Acetabular Component but longer follow up is needed to establish if this implant is at risk. Introduction. RSA can detect the migration of an implant, and continuous migration is a predictor for failure (1). The ASR. TM. resurfacing implant was withdrawn from the marked due to excessive failure rate but showed initial femoral component stability. The aim of this study was to investigate the initial
The osteo-regenerative properties of allograft have recently been enhanced by addition of autogenous skeletal stem cells to treat orthopaedic conditions characterised by lost bone stock. There are however, multiple disadvantages to allograft, including cost, availability, consistency and potential for disease transmission, and trabecular tantalum represents a potential alternative. Tantalum is already in widespread orthopaedic use, although in applications where there is poor initial
Long term, secondary implant fixation of Total Disc Replacements (TDR) can be enhanced by hydroxyapatite or similar osseo-conductive coatings. These coatings are routinely applied to metal substrates. The objective of this in vivo study was to investigate the early stability and subsequent bone response adjacent to an all polymer TDR implant over a period of six months in an animal model. Six skeletally mature male baboons (Papio annubis) were followed for a period of 6 months. Using a transperitoneal exposure, a custom-sized Cadisc L device was implanted into the disc space one level above the lumbo-sacral junction in all subjects. Radiographs of the lumbar spine were acquired prior to surgery, and post-operatively at intervals up to 6 months to assess
Summary Statement. Magnesium has a number of qualities suitable for bioresorbable metallic implants. However, high corrosion rate and formation of hydrogen gas can compromise its performance. Combining magnesium with calcium phosphate improves magnesium's biocompatibility by decreasing gas formation and increasing bone remodeling. Introduction. Clinical problems like risk of postoperative infection and increased incidence of pediatric trauma requiring surgical intervention raised the need for temporary orthopedic implants that would resorb after the bone healing is complete. This would decrease high costs associated with repeated surgeries, minimise recovery times, decrease the risk of postoperative infections, and thus promote higher quality of life to the patients. The specific requirement for orthopedic implants, aside from being bioresorbable, is the ability to bear high loads. Magnesium was suggested as a suitable material for these purposes because it is biocompatible; has excellent mechanical properties; is natural for human body, and seems to stimulate new bone formation. However, an important problem with magnesium is high corrosion rate with consistent hydrogen gas formation on contact with fluids. This in vivo study focuses on investigation of new magnesium-based implants specifically designed to minimise hydrogen gas formation. Methods. Four types of degradable magnesium-based materials were tested for biocompatibility in this study: Magnesium-Hydroxyapatite implants (Mg-HA); Magnesium-Calcium Phosphate Cement (Mg-CPC); alloy of 96% Magnesium and 4% Yttrium (W4); and 99.95% pure magnesium which was a control group. Biomaterials were operated into 33 male New Zealand white rabbits. The animals were sacrificed after 6 and 12 weeks after which the samples were embedded into Epon, paraffin and Technovit resin. The staining was done with TRAP, hematoxylin eosin and toluidine blue. Additionally, TEM and immunohistochemical analysis were performed. The data was analysed both qualitatively and quantitatively by Statistical Package for the Social Sciences (SPSS, v18, SPSS Inc, Chicago, IL). Results. Mg-CPC showed the best performance in this study. New bone formation was significantly more prevalent in Mg-CPC group while gas formation was significantly less comparing to the other materials. Mg-HA had the worst properties due to extremely fast degradation already at 6 weeks, the least amount of new bone formation, and the lowest amount of osteoclasts and multinucleated cells in the implantation site. Pure magnesium and W4 had similar properties: both were surrounded with corrosion layer, and the gas volumes were significantly higher in these two groups compared to other materials. Discussion/Conclusion. New bone was seen forming either in direct contact to implants or around the gas bubbles. The later can be interpreted as body's reaction to protect from gas spreading. Mg-HA's degradation rate was far too fast and this is unacceptable for orthopedic fractures which often require several months to heal and that experience much load. Pure magnesium and W4 although maintained their integrity, were surrounded by corrosion layer and gas bubbles that were bigger in diameter than in the other groups. These findings could compromise
Introduction. The treatment of osteonecrosis of the femoral head (ONFH) in young and active patients remains a challenge. The purpose of this study was to determine and compare the clinical and radiographic results of the two different hip resurfacing systems; hemi-resurfacing and metal-on-metal total hip resurfacing in patients with ONFH. Methods. This study was a retrospective review of 20 patients with 30 hips who had ONFH and underwent hemi-resurfacing or total hip resurfacing between November 2002 and February 2006. We mainly performed hemi-resurfacing for early stage ONFH, and total hip resurfacing for advanced stages. Fifteen hips in 11 patients had a hemi-resurfacing component (Conserve, Wright Medical Co) with a mean age at operation of 50 years and an average follow-up of 5.5 years. Fifteen hips in 10 patients had a metal-on-metal total hip resurfacing component (Birmingham hip resurfacing, Smith & Nephew Co.) with a mean age at operation of 40 years and an average follow-up years. Results. The average postoperative Japanese Orthopaedic Association (JOA) hip scores were 86 points in hemi-resurfacing and 96 points in total hip resurfacing. The difference of pain score was a main factor to explain the difference of total JOA hip score in the two groups. Both implants were radiographically stable, but radiolucent lines around the metaphyseal stem were more frequent in total hip resurfacing. In hemi-resurfacing patients, ten of 15 hips had groin pain or groin discomfort and three hips were revised to total hip arthroplasties (THA) because of femoral neck fracture, acetabular protrusio, and osteoarthritic changes, respectively. In total hip resurfacing patients, there were no revisions and no groin pain observed. Conclusion. In the prosthetic treatment of young active patients with ONFH, it is theoretically desirable to choose an implant with a conservative design in anticipation of the future revision surgery. Hemi-resurfacing hip arthroplasty is the most conservative implant for the treatment of ONFH. However, the results of hemi-resurfacing in this study have been disappointing due to high revision rates and insufficient pain relief despite of the good
Summary Statement. In young, active patients cementless THR demonstrates excellent prosthetic stability by RSA and outstanding clinical outcomes at 5 years using a tapered titanium femoral stem, crosslinked polyethylene liners and either titanium or tantalum shells. Introduction. Early femoral