Advertisement for orthosearch.org.uk
Results 1 - 20 of 112
Results per page:
Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_3 | Pages 27 - 27
23 Feb 2023
Hassanein M Hassanein A Hassanein M Khaled M Oyoun NA
Full Access

This study was performed at Assiut University, Assiut, Egypt. Anterior distal femoral hemiepiphysiodesis (ADFH) using intra-articular plates for the correction of paediatric fixed knee flexion deformities (FKFD) has two main documented complications: postoperative knee pain and implant loosening. This study describes a biomechanical analysis and a preliminary report of a novel extra-articular technique for ADFH. Sixteen femoral sawbones were osteotomized at the level of the distal femoral physis and fixed by rail frames to allow linear distraction simulating longitudinal growth. Each sawbone was tested twice: first using the conventional technique with medial and lateral parapatellar eight plates (group A) and then with the plates inserted in the proposed novel location at the most anterior part of the medial and lateral surfaces of the femoral condyles with screws in the coronal plane (group B). Gradual distraction was performed, and the resulting angular correction was measured. Strain gauges were attached to the plates, and the amount of strain (and equivalent stress) over the plates was recorded. This technique was then applied to 9 paediatric FKFDs of different aetiologies. The preoperative FKFD and the amount of subsequent angular correction were measured. The amount of angular correction was higher in group B at 5, 10-, and 15-mm of distraction (p<0.001). The maximum and overall stresses measured throughout the distraction process were higher in group A (p<0.001). The mean FKFD improved from 24 ± 9° preoperatively to 9 ± 7° after 10 ± 3° months (p<0.001). The correction rate was 1.81 ± 0.65° per month. During ADFH, the fixation of the eight plates in the coronal plane at the anterior part of the femoral condyles may produce greater correction and lower stresses over the implants as compared to the conventional technique. Preliminary results from our initial series seem to support the effectiveness of this technique with respect to the degree of angular correction achieved


Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_10 | Pages 8 - 8
1 Oct 2022
Busch A Jäger M Giebel B Wegner A Bielefeld C Tertel T
Full Access

Aim. Periprosthetic joint infections (PJI) are severe complications after total joint arthroplasty (TJA). Up to now, a gold standard in the diagnostics of PJI is missing. Small extracellular vesicles (sEVs) are secreted by all types of cells and play a key role in immune response in presence of infection (1). In this prospective study, the diagnostic accuracy of sEVs in the synovial fluid to detect PJI of knee, hip and shoulder joints was investigated. We hypothesized increased surface markers of sEVs in PJI compared to aseptic complications (e.g. implant loosening, stress shielding related pain). Method. Synovial fluid from 48 patients with painful arthroplasty was examined. The distinction between aseptic and infectious cases was made on the basis of the 2018 Definition of Periprosthetic Hip and Knee Infection (2). 35 (72,9%) probands assigned to aseptic and 13 patients (27,1%) to PJI group. Immuno-fluorescence flow cytometry served to document the concentrations of CD9, CD63, CD66b, CD82 and HLA-DR on sEVs. Results. The concentration of CD9 surface marker on sEVs in synovial fluid was significantly lower (p=0.002) in PJI group than in aseptic group. In contrast, the levels of CD82 on sEVs in synovial fluid was significantly higher (p<0.0001) in the PJI group than in aseptic group. The concentrations of CD63, CD66b and HLA-DR on sEVs in synovial fluid did not differ significantly between the two cohorts (CD63: p=0.372; CD66b: p=0.634; HLA-DR: p=0.558). Conclusions. Overall, the significance of sEVs in the diagnostics of PJI is not well enough understood and the subject of current research and scientific discussion. Our data suggest, that CD82 and CD9 on sEVs in synovial fluid are promising biomarkers to differentiate between PJI and aseptic complications


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_3 | Pages 49 - 49
23 Feb 2023
Sorial R Coffey S Callary S
Full Access

Roentgen Stereophotogrammetric Analysis (RSA) is the gold standard for measuring implant micromotion thereby predicting implant loosening. Early migration has been associated with the risk of long-term clinical failure. We used RSA to assess the stability of the Australian designed cementless hip stem (Paragon TM) and now report our 5-year results. Fifty-three patients were prospectively and consecutively enrolled to receive a Paragon hip replacement. Tantalum beads were inserted into the bone as per RSA protocol and in the implant. RSA x-rays were taken at baseline 1–4 days post-surgery, at 6 weeks, 6 months, 12 months, 2 years, and 5 years. RSA was completed by an experienced, independent assessor. We reported the 2-year results on 46 hips (ANZJS 91 (3) March 2021 p398) and now present the 5-year results on 27 hips. From the 2-year cohort 5 patients had died, 8 patients were uncontactable, 1 patient was too unwell to attend, 5 patients had relocated too far away and declined. At 5 years the mean axial subsidence of the stem was 0.66mm (0.05 to 2.96); the mean rotation into retroversion was 0.49˚ (−0.78˚ to 2.09˚), rotation of the stem into valgus was −0.23˚ (−0.627˚ to 1.56˚). There was no detectable increase in subsidence or rotation between 6 weeks and 5 years. We compared our data to that published for the Corail cementless stem and a similar pattern of migration was noted, however greater rotational stability was achieved with the Paragon stem over a comparable follow-up period. The RSA results confirm that any minor motion of the Paragon cementless stem occurs in the first 6 weeks after which there is sustained stability for the next 5 years. The combination of a bi-planar wedge and transverse rectangular geometry provide excellent implant stability that is comparable to or better than other leading cementless stems


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_2 | Pages 30 - 30
10 Feb 2023
Gupta A Launay M Maharaj J Salhi A Hollman F Tok A Gilliland L Pather S Cutbush K
Full Access

Complications such as implant loosening, infection, periprosthetic fracture or instability may lead to revision arthroplasty procedures. There is limited literature comparing single-stage and two-stage revision shoulder arthroplasty. This study aims to compare clinical outcomes and cost benefit between single-stage and two-stage revision procedures. Thirty-one revision procedures (mean age 72+/-7, 15 males and 16 females) performed between 2016 and 2021 were included (27 revision RSA, 2 revision TSA, 2 failed ORIFs). Two-stage procedures were carried out 4-6 weeks apart. Single-stage procedures included debridement, implant removal and washout, followed by re-prep, re-drape and reconstruction with new instrumentations. Clinical parameters including length of stay, VAS, patient satisfaction was recorded preoperatively and at mean 12-months follow up. Cost benefit analysis were performed. Seven revisions were two-stage procedures and 24 were single-stage procedures. There were 5 infections in the two-stage group vs 14 in the single-stage group. We noted two cases of unstable RSA and 8 other causes for single-stage revision. Majority of the revisions were complex procedures requiring significant glenoid and/or humeral allografts and tendon transfers to compensate for soft tissue loss. No custom implants were used in our series. Hospital stay was reduced from 41+/-29 days for 2-stage procedures to 16+/-13 days for single-stage (p<0.05). VAS improved from 9+/-1 to 2+/-4 for two-stage procedures and from 5+/-3 to 1+/-2 for single-stages. The average total cost of hospital and patient was reduced by two-thirds. Patient satisfaction in the single-stage group was 43% which was comparable to the two-stage group. All infections were successfully treated with no recurrence of infection in our cohort of 31 patients. There was no instability postoperatively. 3 patients had postoperative neural symptoms which resolved within 6 months. Single-stage procedures for revision shoulder arthroplasty significantly decrease hospital stay, improve patients’ satisfaction, and reduced surgical costs


Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_12 | Pages 25 - 25
1 Dec 2022
Verhaegen J Vandeputte F Van den Broecke R Roose S Driesen R Corten K
Full Access

Psoas tendinopathy is a potential cause of groin pain after primary total hip arthroplasty (THA). The direct anterior approach (DAA) is becoming increasingly popular as the standard approach for primary THA due to being a muscle preserving technique. It is unclear what the prevalence is for the development of psoas-related pain after DAA THA, how this can influence patient reported outcome, and which risk factors can be identified. This retrospective case control study of prospectively recorded data evaluated 1784 patients who underwent 2087 primary DAA THA procedures between January 2017 and September 2019. Psoas tendinopathy was defined as (1) persistence of groin pain after DAA THA and was triggered by active hip flexion, (2) exclusion of other causes such as dislocation, infection, implant loosening or (occult) fractures, and (3) a positive response to an image-guided injection with xylocaine and steroid into the psoas tendon sheath. Complication-, re-operation rates, and patient-reported outcome measures (PROMs) were measured. Forty-three patients (45 hips; 2.2%) were diagnosed with psoas tendinopathy according to the above-described criteria. The mean age of patients who developed psoas tendinopathy was 50.8±11.7 years, which was significantly lower than the mean age of patients without psoas pain (62.4±12.7y; p<0.001). Patients with primary hip osteoarthritis were significantly less likely to develop psoas tendinopathy (14/1207; 1.2%) in comparison to patients with secondary hip osteoarthritis to dysplasia (18/501; 3.6%) (p<0.001) or FAI (12/305; 3.9%) (p<0.001). Patients with psoas tendinopathy had significantly lower PROM scores at 6 weeks and 1 year follow-up. Psoas tendinopathy was present in 2.2% after DAA THA. Younger age and secondary osteoarthritis due to dysplasia or FAI were risk factors for the development of psoas tendinopathy. Post-operatively, patients with psoas tendinopathy often also presented with low back pain and lateral trochanteric pain. Psoas tendinopathy had an important influence on the evolution of PROM scores


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_6 | Pages 44 - 44
1 Jul 2020
Wallace R Xie S Simpson H
Full Access

Trabecular bone is a multiscale hierarchical composite material that is known to display time-dependant properties. However, most biomechanical models treat this material as time independent. Time-dependant properties, such as creep and relaxation, are thought to play an important role in many clinically relevant orthopaedic issues: implant loosening, vertebral collapse, and non-traumatic fractures. In this study compressive multiple-load-creep-unload-recovery (MLCUR) tests were applied to human trabecular bone specimens. 15 female femoral heads were harvested, with full ethical approval and patient consent, at the time of total hip replacement. Central cores were extracted and cut parallel under constant irrigation. Specimens were embedded in end caps using surgical cement, an epoxy tube was secured around the end caps and filled with phosphate buffered saline (PBS) to ensure the specimens remained hydrated throughout. Embedded samples were scanned by microCT (SkyScan 1172, Bruker) at a resolution of 17µm to determine microarchitecture. Bone volume fraction (BVF) was used to represent microarchitecture. Specimens had an effective length of 16.37mm (±1.90SD) with diameter of 8.08mm (±0.05SD), and BVF of 19.22% (±5.61SD). The compressive MLCUR tests were conducted at 5 strain levels, 2000µε, 4000µε, 6000µε, 8000µε and 10000µε. At each strain level, the load required to maintain each strain was held for 200s (creep) then unloaded to 1N for 600s (recovery). The instantaneous, creep, unloading and recovered strains can be easily obtained from the strain-time curves. Stress-strain plots revealed the Young's modulus. Data was modelled using line of best fit with appropriate curve fitting. R2 values were used to indicate association. Mechanical testing demonstrated the expected time independent relationship between BVF and stiffness: higher stiffness was found for specimen with higher BVF and this was consistent for all strain levels. Creep strain was found to depend on instantaneous strain and BVF. At low levels of instantaneous strain, there was a greater amount of creep strain in low BVF samples (R2 = 0.524). This relationship was no longer apparent at higher strain levels (R2 = 0.058). Residual strain also depended on the applied instantaneous strain and BVF: at low levels of strain, residual strain was similar with all BVF (R2 = 0.108) and at high levels of strain, residual strain was greater in low BVF samples (R2 = 0.319). The amount of instantaneous strain applied to each sample is constant, variations in stiffness result in different applied loads. In low BVF bone, the stiffness is also low, therefore the stress required to reach designed strain is also lower: yet, there is more creep and less recovery. We have demonstrated that even at loads below recognised yield levels, time-dependence affects the mechanical response and residual strain is present. In cases of low BVF, deflection due to creep, and increased irrecoverable strain could have clinically relevant consequences, such as implant loosening and vertebral collapse. The role of time-dependant properties of bone is seldom considered. This data could be developed into a constitutive model allowing these time-dependant behaviours to be incorporated in finite element modelling, leading to better predictions of implant loosening, especially for lower quality bone


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_5 | Pages 77 - 77
1 Apr 2018
Su E Khan I Gaillard M Gross T
Full Access

INTRODUCTION. Childhood diseases involving the proximal femoral epiphysis often cause abnormalities that can lead to end-stage arthritis at a relatively young age and the need for total hip arthroplasty (THA). The young age of these patients makes hip resurfacing arthroplasty (HRA) an alternative and favorable option due to the ability to preserve femoral bone. Patients presenting with end-stage hip arthritis as sequelae of childhood diseases such as Legg-Calves-Perthes (LCP) and slipped capital femoral epiphysis (SCFE) pose altered femoral anatomy, making HRA more technically complicated. LCP patients can result in coxa magna, coxa plana and coxa breva causing altered femoral head-to-neck ratio. There can also be acetabular dysplasia along with the proximal femoral abnormalities. SCFE patients have altered femoral head alignment. In particular, the femoral head is rotated medially and posteriorly, reducing the anterior and lateral offset. Additionally, many of these patients have retained hardware, making resurfacing more complicated. We report findings of a cohort of patients, with history of either LCP or SCPE who underwent HRA to treat end-stage arthritis. METHODS. Data was retrospectively collected for patients who had HRA for hip arthritis as a result of either LCP (n=67) or SCFE (n=21) between 2004 and 2014 performed by two surgeons. Demographic information, clinical examination and improvement was collected pre and postoperatively. Improvement was determined using Harris Hip Scores (HHS) and UCLA activity scores. Anteroposterior radiographs were measured pre and postoperatively to determine leg length discrepancy. Radiographs were inspected postoperatively for radiolucent lines, implant loosening and osteolysis. Kaplan-Meier survivorship for freedom from reoperation for any reason was calculated. Paired student t-tests were used to compare groups. RESULTS. The average age at the time of surgery was 44 years (11.8–68), with an average follow-up of 3.7 years (.22–11.2). Retained hardware was present in a total of 5 patients, 1 LCP and 4 SCFE. Preoperative HHS was 58.3 (33–83), which increased significantly to 94.9 (55–100) at the most recent postoperative timepoint (p<.0001). The most recent UCLA activity score was 7 (1–10). Average leg length discrepancy preoperatively was 7.5mm (0–20), which significantly improved to 0.6mm (0–7.5) postoperatively (p<.0001). At most recent follow-up, metal ion testing revealed median chromium level of 2.3 parts per billion (ppb, 1–7.7) and median cobalt level of 1.5 (0–9.2). There were three failures in the group with 1 LCP due to instability at 2.7 years, and 2 SCFE due to femoral neck fracture at 1 month in one and clinical failure due to unexplained pain at 5.5 years in one. Revision surgery was done in 2 patients, 1 LCP and 1 SCFE. Radiographic examination of all non-failure HRA patients revealed implants to be in good alignment with no indication of implant loosening at the most recent postoperative timepoint. Kaplan-Meier survivorship for freedom from revision was 96.2 at 5 years. CONCLUSION. The findings demonstrated increase in functional outcomes in patients who underwent HRA for osteoarthritis associated with LCP and SCFE. There was no increase in complications including femoral neck fracture or implant loosening despite technical challenges of the procedure


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_1 | Pages 55 - 55
1 Feb 2021
Niesen A Hull M Howell S Garverick A
Full Access

Introduction. Model-based radiostereometric analysis (MBRSA) allows the in vivo measurement of implant loosening (i.e. migration) from a host bone by acquiring a pair of biplanar radiographs of the patient's implant over time. Focusing on total knee replacement patients, the accuracy of MBRSA in calculating tibial baseplate migration depends on the accuracy in registering a 3D model onto the biplanar radiographs; thus, the shape of the baseplate and its orientation relative to the imaging planes is pertinent. Conventionally, the baseplate coordinate system is aligned with the laboratory coordinate system, however, this reference orientation is unnecessary and may hide unique baseplate features resulting in less accurate registration (Figure 1). Therefore, the primary objective of this study was to determine the optimal baseplate orientation for improving accuracy during MBRSA, and an acceptable range of orientations for clinical use. A second objective was to demonstrate that a custom knee positioning guide repeatably oriented the baseplate within the acceptable range of orientations. Materials and Methods. A tibia phantom consisting of a baseplate rigidly fixed to a sawbone was placed in 24 orientations (combination of six rotations about X (i.e. knee flexion) and four rotations about Z (i.e. hip abduction)) with three pairs of radiographs acquired at each orientation. The radiographs were processed in MBRSA software, and the mean maximum total point motion (MTPM), an indicator of bias error during model registration, was plotted as a function of the two rotations to determine the optimal orientation and a range of acceptable orientations (Figure 2). A custom knee positioning guide was manufactured with the goal of orienting the baseplate close to the optimal orientation and within the acceptable range of orientations (Figure 3). Ten independent pairs of biplanar radiographs were acquired by repeatedly placing a knee model in the knee positioning guide, and the images were processed in MBRSA software to determine the baseplate orientation. Results and Discussion. Results showed an 85% decrease in bias error between the reference orientation (i.e. no rotation) and the optimal orientation (10° rotation about X and 5° rotation about Z). An acceptable range of orientations from 5° − 20° rotation about an axis perpendicular to the sagittal imaging plane and from 5° − 15° rotation about an axis perpendicular to the coronal imaging plane was defined as these orientations decreased the bias error by more than 50%. Additionally, the custom knee positioning guide controlled the mean orientation ± one standard deviation within the acceptable range of orientations. Conclusions. The accuracy of MBRSA is significantly improved if the tibial baseplate is placed in the range of acceptable orientations as opposed to the conventional reference orientation. A custom knee positioning guide can be used during a clinical study to repeatably position the patient's knee within the range of acceptable orientations. For any figures or tables, please contact the authors directly


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_1 | Pages 3 - 3
1 Feb 2021
Hwang E Braly H Ismaily S Noble P
Full Access

INTRODUCTION. The increasing incidence of periprosthetic femoral fractures (PFF) after total hip arthroplasty presents growing concerns due to challenges in treatment and increased mortality. PFF are often observed when the prosthesis is implanted in varus, especially with blade-type stems. To help elucidate its impact on the PFF risk, the specific research question is: What is the effect of misalignment of a blade-type stem (resulting in down-sized prosthesis) on 1)the distribution and magnitude of cortical stresses and 2)implant-bone micromotion. METHOD. We developed two finite element models consisting of an average female femur implanted within a generic blade-type stem prosthesis, (i)in neutral alignment, and (ii)oriented in 5° of varus, coupled with corresponding down-sizing of the prosthesis. Each model consisted of 1.1million elements, while the average mesh length at the implant-bone interface was 0.4mm. Elastic moduli of 15GPa(cortex), 150MPa(trabecular bone), and 121GPa(implant), and Poisson's ratio of 0.3 were assumed. The distal end was fixed and the interface was defined as a surface-to-surface contact with friction coefficients (dynamic 0.3; static 0.4). Walking and stair-climbing were simulated by loading the joint contact and muscle forces after scaling to the subjects’ body weight. The peak von Mises stress and the average stress within the surface having 1cm diameter and the center at where the peak stress occurred at each contacting area, the interfacial micromotion along medial, lateral side were analyzed. For statistical analysis, two-tailed t-test was performed between the neutral and varus cases over four loading cycles with significance level of p<0.05. RESULTS. Neutral alignment led to three areas of cortical/implant contact with focal load transfer via those areas, whereas varus placement limited to two areas (Figure 1). In both simulations, the greatest stress was observed at the proximal medial contact. With varus, average and peak stresses increased by 39% and 65% during walking and 28% and 35% during stair-climbing, respectively (Table 1). Micromotion was greatest over the proximal third of the interface, especially along lateral side (Figure 2). The 90. th. percentile values with the varus exceeded the neutral by 35% with walking and 28% with stair-climbing over the lateral interface. DISCUSSION. The proximal medial location of the greatest stress correlates well with clinical observations in PFF involving a posteromedial calcar fragment. Based on current lesser stress than the reported yield stress, loading during daily living activities may result in microdamage rather than an immediate PFF. However, impact loading such as hammering for stem insertion may introduce PFF at the location, especially with in varus. The increase in interfacial micromotion is expected to lead to increase in the risk for implant loosening, also leading to PFF. Further study is needed to confirm the validity and generalizability of these findings. SIGNIFICANCE/CLINICAL RELEVANCE. This study demonstrates the importance of proper alignment of femoral stems of a blade-type design. The misalignment (resulting in down-sizing) increased stress up to 65% and micromotion up to 35% around prosthesis, even during daily activities, thus increased attention to proper implant alignment and sizing is suggested when using components of this design. For any figures or tables, please contact the authors directly


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_9 | Pages 127 - 127
1 May 2016
Laky B Heuberer P Brandl G Kriegleder B Anderl W Pauzenberger L
Full Access

In the past century several shoulder reconstruction systems with different types of prostheses and fixation methods have been developed to improve shoulder arthroplasty, especially to cover a wide range of pathologies and revision situations. The aim of this prospective trial was to report clinical and radiological mid-term results of a stemless humeral head replacement with metaphyseal hollow screw fixation. A consecutive series of 147 shoulders in 138 patients (84 female, 54 male; mean age of 67 years, range 40–84) undergoing stemless humeral head arthroplasty were considered for this single-centre trial. We prospectively followed 120 shoulders (40 hemi- and 80 total-arthroplasties) for an average of five years or until a reoperation. Patient's clinical and functional outcome was evaluated according to the Constant score and active range of motions (ROM) was measured. Patient's satisfaction with the treatment was evaluated. Additionally, operating times and complications were recorded. Radiological assessment for radiolucencies or implant migration was performed. The mean Constant score significantly increased from 35 points preoperatively to 62 points at the last follow-up (p<0.001). All subcomponents (pain, daily activity, ROM, strength) of the Constant score were significantly (p<0.001) higher at follow-up. Active flexion improved from 90° to 150° (p<0.001), active abduction from 78° to 120° (p<0.001), and active external rotation from 20° to 40° (p<0.001) between preoperative and last clinical assessment. Furthermore, 54% of the patients were very satisfied, 34% satisfied, and 12% unsatisfied. Operating times of the new stemless prosthesis were significantly shorter compared to a stemmed prosthesis. Over the follow-up period, all humeral head components were radiological centred, changing radiolucencies were detected; however no implant loosening occurred. Revision surgery for implant loosening only occurred in the metal-backed glenoid component with hollow screw fixation; otherwise no complication due to implant loosening was detected. The promising five-year results suggest that the concept of this stemless humeral head replacement might be an expedient alternative to existing shoulder replacements. Anatomical cutting of the humeral head and hollow screw fixation allow a familiar access to the glenoid combined with a shaft independent, less complex bone-sparing surgery along with shorter operating times and favourable revision situation


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_5 | Pages 81 - 81
1 Apr 2018
Sabesan V Whaley J Lima D Villa J Pathak V Zhang L
Full Access

Introduction. Varying degrees of posterior glenoid bone loss occurs in patients with end stage osteoarthritis and can result in increased glenoid retroversion. The excessive retroversion can affect implant stability, eccentric glenoid loading, and fixation stresses. Ultimately, the goal is to correct retroversion to restore normal biomechanics of the glenohumeral joint. The objective of this study was to identify the optimal augmented glenoid design based on finite element analysis (FEA) modeling which will provide key insights into implant loosening mechanisms and stability. Materials and Methods. Two different augmented glenoid designs, posterior wedge and posterior step- were created as a computer model by a computer aided design software (CAD). These implant CAD models were created per precise manufacturers dimensions and sizes of the augmented implant designs. These implants were virtually implanted to correct 20° glenoid retroversion and the different mechanical parameters were calculated including: the glenohumeral subluxation force, relative micromotion at the bone-cement interface the glenoid, implant and cement mantle stress levels. The FEA model was then utilized to make measurements while the simulating abduction with the different implant designs. The biomechanical response parameters were compared between the models at comparable retroversion correction. Results. The model prediction of force ratio for the augmented wedge design was 0.56 and for the augmented step design was 0.87. The step design had higher force ratio than the wedge one at similar conformity settings. Micromotion was defined as a combination of three components based on different directions. The distraction measured for the wedge design was 0.05 mm and for the step component, 0.14 mm. Both implants showed a similar pattern translation wise. The greatest difference between the two implants was from the compression standpoint, where the step component showed almost three times more movement than the wedge design implant. Overall, the step design registered greater micromotion than the wedge one during abduction physiologic loading. The level of stress generated during abduction on the glenoid vault was 1.65 MPa for the wedge design and 3.78 MPa for the step one. All stress levels were found below the determined bone failure limit for the bone and polyethylene (10–20 MPa). Concerning implant stress, the results measured on the backside of the wedge and step components were 6.62 MPa and 13.25 MPa, respectively. Both components showed high level of stress level measured on the cement mantle, which exceeded the endurance limit for cement fracture (4 MPa). Discussion. The augmented glenoid is a novel surgical implant for use in with severe glenohumeral osteoarthritis. Unlike standard glenoid prosthetics, the augmented glenoid is better suited for correcting moderate to severe retroversion. Whereas a step design might provide higher glenohumeral stability, the tradeoff is higher glenoid vault, implant and cement mantle stress levels, and micromotion, indicating higher risks of implant loosening, failure or fracture over time, leading to poorer clinical outcomes and higher revision rates


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_5 | Pages 82 - 82
1 Apr 2018
Sabesan V Lima D Whaley J Pathak V Villa J Zhang L
Full Access

Introduction. Augmented glenoid implants provide a new avenue to correct glenoid bone loss and can possibly reconcile current prosthetic failures and improve long-term performance. Biomechanical implant studies have suggested benefits from augmented glenoid components but limited evidence exists on optimal design of these augmented glenoid components. The aim of this study was to use integrated kinematic finite element analysis (FEA) model to evaluate the optimal augmented glenoid design based on biomechanical performance in extreme conditions for failure. Materials and Methods. Computer aided design software (CAD) models of two different commercially available augmented glenoid designs - wedge (Equinox®, Exactech, Inc.) and step (Steptech®, Depuy Synthes) were created per precise manufacturer's dimensions and sizes of the implants. Using FE modeling, these implants were virtually implanted to correct 20° of glenoid retroversion. Two glenohumeral radial mismatches (RM) (3.5/4mm and 10 mm) were evaluated for joint stability and implant fixation to simulate high risk conditions for failure. The following variables were recorded: glenohumeral force ratio, relative micromotion (distraction, translation and compression), and stress on the implant and at the cement mantle interface. Results. The wedged and step designs showed similar force ratio measurements with both RM [(wedge (3.5 mm: 0.69; 10 mm: 0.7) and step (4 mm: 0.72; 10 mm: 0.75)]. Surrogate for micromotion was a combination of distraction, translation and compression. As radial mismatch increased, both implants showed less distraction [wedge design (3.5 mm: 0.042 mm; 10mm: 0.030 mm); step design (4 mm: 0.04 mm; 10 mm: 0.027 mm)]. As radial mismatch increased, both implants showed more translation [wedge design (3.5 mm: 0.058 mm; 10mm: 0.062 mm); step design (4 mm: 0.023 mm; 10 mm: 0.063 mm)]. During compression measurements, the different designs did not follow the same pattern as their conformity setting changed. The wedge one decreased as radial mismatch increased, (at 3.5mm: 0.18 mm; at 10 mm: 0.10 mm) and the step design increased as its radial mismatch increased (at 3.5 mm: 0.19 mm; at 10 mm: 0.25 mm). Quantitatively, the step design showed higher risk of implant instability and loosening. As radial mismatch increased, the stress level on the backside of the implant increased as opposed to the stress levels on the cement mantle which decreased for both designs as the radial mismatch increased [wedged (3.5 mm: 2.9 MPa; 10mm: 2.6 MPa); step (3.5 mm: 4.4 MPa; 10 mm: 4.1 MPa)]. In this situation, the risk of loosening was higher for the step designwhich exceeded the endurance limit of the cement material (4 MPa). Discussion. Implant loosening and wear are associated with increased micromotion and high stress levels. Based on our FEA model, overall increased radial mismatch has an advantage of providing higher glenohumeral stability but not without tradeoffs, such as higher implant and cement mantle stress levels, and micromotion increasing the risk of implant loosening, failure or fracture over time, leading to poorer clinical outcomes and higher revision rates, especially when considering a step augmented glenoid design


Bone & Joint Open
Vol. 4, Issue 7 | Pages 539 - 550
21 Jul 2023
Banducci E Al Muderis M Lu W Bested SR

Aims

Safety concerns surrounding osseointegration are a significant barrier to replacing socket prosthesis as the standard of care following limb amputation. While implanted osseointegrated prostheses traditionally occur in two stages, a one-stage approach has emerged. Currently, there is no existing comparison of the outcomes of these different approaches. To address safety concerns, this study sought to determine whether a one-stage osseointegration procedure is associated with fewer adverse events than the two-staged approach.

Methods

A comprehensive electronic search and quantitative data analysis from eligible studies were performed. Inclusion criteria were adults with a limb amputation managed with a one- or two-stage osseointegration procedure with follow-up reporting of complications.


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_2 | Pages 71 - 71
1 Feb 2020
Sipek K Gustafson J McCarthy S Hall D Lundberg H Levine B Pourzal R
Full Access

Introduction. Total hip arthroplasty (THA) is a commonly performed procedure to relieve arthritis or traumatic injury. However, implant failure can occur from implant loosening or crevice corrosion as a result of inadequate seating of the femoral head onto the stem during implantation. There is no consensus—either by manufacturers or by the surgical community—on what head/stem assembly procedure should be used to maximize modular junction stability. Furthermore, the role of “off-axis” loads—loads not aligned with the stem taper axis—during assembly may significantly affect modular junction stability, but has not been sufficiently evaluated. Objective. The objective of this study was to measure the three-dimensional (3D) head/stem assembly loads considering material choice—metal or ceramic—and the surgeon experience level. Methods. A total of 29 surgeons of varying levels (Attending, Fellow, Resident) were recruited and asked to perform a benchtop, head/stem assembly using an instrumented apparatus simulating a procedure in the operating room (Figure 1). The apparatus comprised of a 12/14 stem taper attached to a 3D load sensor (9347C, Kistler® USA, Amherst, NY). Surgeons were randomly assigned a metal or ceramic femoral head and instructed to assemble the taper using their preferred surgical technique. This procedure was repeated five times. Surgeons were brought back to test the opposite material after four weeks. Output 3D load data was analyzed for differences in peak vertical load applied, angle of deviation from the stem axis—termed off-axis angle, variability between trials, and impaction location. Results. Preliminary results suggest no significant differences between the loads applied to the metal heads and the ceramic heads. Across the two materials tested, both attendings and residents applied greater loads than fellows (p=0.33; Residents=9.0 kN vs Fellow=7.2 kN: p=0.27; Attendings=8.9 kN vs 7.2 kN) with significantly less variability (Attendings: σ= 1.58; Fellows: σ= 3.26; Residents: σ= 2.86). Attending surgeons also exhibited applied loads at significantly lower off-axis angles compared to fellows (p=0.01; 4.6° vs Fellow=7.2°) (Figure 2). However, all of our clinicians assembled ceramic head tapers with a greater off-axis angle as compared to assembling metal heads. In addition, metal heads were impacted more on-axis for all surgeon experience levels (Figure 3). While the impaction load plots suggest that the first impact strike is the most crucial for head stability, it was determined that the number of strikes is not as important as the maximum impaction load applied. Conclusion. Differences in impaction load when assembling metal and ceramic femoral heads were not apparent; however, variability of technique and load was observed across the different surgical experience levels as well as within surgeons of the same level. Understanding assembly mechanics and surgical habits for THA will provide insight to the best assembly procedures for these implants. For any figures or tables, please contact authors directly


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_1 | Pages 64 - 64
1 Feb 2020
Hopwood J Redmond A Chapman G Richards L Collins S Brockett C
Full Access

Background. Total ankle arthroplasty (TAA) is an alternative to ankle arthrodesis, replacing the degenerated joint with a mechanical motion-preserving alternative. Implant loosening remains a primary cause of TAA revision, and has been associated with wear-mediated osteolysis. Differing implant designs have a major influence on the wear performance of joint replacements. Providing a range of implant sizes allows surgeons a greater intra-operative choice for varying patient anatomy and potential to minimise wear. Minimal pre-clinical testing exists in the literature that investigates the effect of implant size on the wear behaviour. The aim of this study therefore was to investigate the effect of two different implant sizes on the wear performance of a TAA. Materials & Methods. Six ‘medium’ and six ‘extra small’ BOX® (MatOrtho Ltd, UK) TAA implants, of the same conceptual design and polyethylene insert thickness, were tested in a modified 6 station pneumatic knee simulator. 5 million cycles (Mc) of wear simulation were completed for each implant size, under kinematics aiming to replicate an ankle gait cycle (Figure 1) [1]. The simulator used had six degrees of freedom, of which four were controlled. The maximum axial load was 3150N, equivalent to 4.5 times body weight of a 70kg individual. The flexion profile ranged from −15° plantarflexion to 15° dorsiflexion. Rotation about the tibial component ranged from −2.3° of internal rotation to 8° external rotation, and anterior/posterior (AP) displacement ranged from 3.1 mm anterior to −0.9 mm posterior displacement. The lubricant used was 25% bovine serum supplemented with 0.04% sodium azide to prevent bacterial degradation. The wear of the TAA polyethylene inserts were determined gravimetrically after each Mc, with unloaded soak controls used to compensate for the uptake of moisture by the polyethylene. Results. There were no significant differences (P = 0.872) in the mean wear rates (± 95% confidence limits) between the medium (11.00 ± 3.06 mm3/Mc) and extra small (10.64 ± 4.61 mm3/Mc) implant sizes (Figure 2). An observation of insert surfaces showed clear signs of abrasive wear and burnishing (Figure 3). There was evidence of polyethylene transfer and scratching on the tibial components, while talar components displayed fine linear scratching in similar directions for both implant sizes. Conclusions. The wear rates of both implant sizes are comparable to the wear rate (13.30 ± 2.50 mm3/Mc) of a previous wear study, which was conducted on ‘medium-sized’ Corin Zenith TAAs, under the same simulator conditions for 2 Mc [1]. The wear rates for both implant sizes are substantially lower than the wear of four ‘small-sized’ BOX® ankles (18.60 ± 12.80 mm3/Mc) for 2Mc [2]. The considerable difference in wear rates may be due to the lower forces, higher AP and deionised water as the test lubricant [2], which does not replicate the features of the natural synovial fluid and produce tribological artefact. The results from this study suggest that under the same kinematic and kinetic conditions, the wear rates are unaffected by a change in TAA implant size


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_2 | Pages 14 - 14
1 Feb 2020
Munford M Hossain U Jeffers J
Full Access

Introduction. Integrating additively manufactured structures, such as porous lattices into implants has numerous potential benefits, such as custom mechanical properties, porosity for osseointegration/fluid flow as well as improved fixation features. Component anisotropic stiffness can be controlled through varying density and lattice orientation. This is useful due to the influence of load on bone remodelling. Matching implant and bone anisotropy/stiffness may help reduce problems such as stress shielding and prevent implant loosening. It is therefore beneficial to be able to design AM parts with a desired anisotropic stiffness. In this study we present a method that predicts the anisotropic stiffness of an additively manufactured lattice structure from its CAD data, and validate this model with experimental testing. The model predicts anisotropic stiffness in terms of density (ρ), fabric (M) and fabric eigen values (m) and is matched to stiffness data of the structure in 3 principal directions, based on an orthotropic assumption. This model was described in terms of 10 constants and had the form shown in Equation 1. Eq.1. S. =. ∑. i. ,. j. =. 1.  .  .  .  . i. ,. j. =. 3. λ. (. i. ,. j. ). ρ. k. m. (. i. ). 1. (. i. ). m. (. j. ). 1. (. i. ). |. M. i. M. j. '. |. 2. Methods. A stochastic line structure was formed in CAD by joining pseudo-random points generated using the Poisson-disk method Lines at an angle lower than 30° to the x-y plane removed to allow for AM manufacturing. Lines were converted to struts with 330 µm diameter. Second order fabric tensors were determined from CAD files of the AM specimens using the mean intercept length (MIL), the gold standard for determining a measure of the ‘average orientation’ of material within trabecular bone structures. 10 × 10 × 12 mm specimens of the CAD model were manufactured on a Renishaw AM250 powder bed fusion machine. The structure was built in 10 different orientations to enable stiffness measurement in 10 different directions (n=5 for each direction). Compression testing in a servohydraulic materials testing machine was performed according to ISO13314 with LVDTs used to measure displacement to remove compliance effects. Stress-strain curves were obtained and elastic moduli were estimated from a hysteresis loop in the load application, from 70% to 20% of the plateau stress. Specimen density and fabric data were fit to the observed stiffnesses using least squares linear regression. Experimental stiffnesses of the structure in 10 directions were compared to the model to evaluate the accuracy of model predictions. Results & Discussion. The model predicted the stiffness of the structure across all 10 orientations to within 13% absolute error compared to the observed stiffness data, with an R. 2. value of 0.969. The three dimensional stiffness plot formed by the model was similar to the experimental data, displaying an hourglass shape. Our model is the first to predict the anisotropic stiffness of stochastic structures and will be highly useful in predicting stiffness of lattice structures and could also be applied to bone to measure anisotropic stiffness. For any figures or tables, please contact authors directly


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_1 | Pages 120 - 120
1 Feb 2020
Gonzalez FQ Fattori A Lipman J Negro ND Brial C Figgie M Hotchkiss R Pressacco M Wright T
Full Access

Introduction. The interaction between the mobile components of total elbow replacements (TER) provides additional constraint to the elbow motion. Semi-constrained TER depend on a mechanical linkage to avoid dislocation and have greater constraint than unconstrained TER that rely primarily in soft tissue for joint stability. Greater constraint increases the load transfer to the implant interfaces and the stresses in the polyethylene components. Both of these phenomena are detrimental to the longevity of TER, as they may result in implant loosening and increased damage to the polyethylene components, respectively[1]. The objective of this work was to compare the constraint profile in varus-valgus and internal-external rotation and the polyethylene stresses under loads from a common daily activity between two semi-constrained TER, Coonrad/Morrey (Zimmer-Biomet) and Discovery® (DJO), and an unconstrained TER, TEMA (LimaCorporate). Methods. We developed finite element (FE) models of the three TER mechanisms. To reduce computational cost, we did not include the humeral and ulnar stems. Materials were linear-elastic for the metallic components (E. Ti6Al4V. =114.3 GPa, E. CoCr. =210 GPa, v=0.33) and linear elastic-plastic for the polyethylene components (E=618 MPa, v=0.46; S. Y. =22 MPa; S. U. =230.6 MPa; ε. U. =1.5 mm/mm). The models were meshed with linear tetrahedral elements of sizes 0.4–0.6 mm. We assumed a friction coefficient of 0.02 between metal and polyethylene. In all simulations, the ulnar component was fixed and the humeral component loaded. We computed the constraint profiles in full extension by simulating each mechanism from 8° varus to 8° valgus and from 8° internal to 8° external rotation. All other degrees-of-freedom except for flexion extension were unconstrained. Then, we identified the instant during feeding that generated the highest moments at the elbow[2], and we applied the joint forces and moments to each TER to evaluate the stresses in the polyethylene. To validate the FE results, we experimentally evaluated the constraint of the design with highest polyethylene stresses in pure internal-external rotation and compared the results against those from a FE model that reproduced the experimental setup (Fig.1-a). Results. For each design, the constraint profiles in varus-valgus (Fig.2-a) were similar to internal-external rotation (Fig.2-b). All designs showed a lax zone in which the mechanisms rotated freely and an engagement zone in which the mobile components contacted, resulting in load transfer. The laxity of the Coonrad/Morrey and the Discovery® was similar and lower than that of the TEMA. After engagement, the stiffness of the TEMA was less than that of the Discovery® and the Coonrad/Morrey. The TEMA showed the lowest polyethylene stresses of all three designs under demanding loads during feeding. Only Discovery® and Coonrad/Morrey had zones reaching permanent deformation (Fig.3). For the Coonrad/Morrey, with the highest polyethylene stresses, the experimental and computational constraint profiles were similar (Fig.1-b). Discussion. The TEMA unconstrained design transferred less moment than semi-constrained designs, reducing the burden on the implant interfaces. Moreover, the TEMA design had lower stresses in the polyethylene components due to the combination of less constraint and a lack of sharp edges on the articular surfaces. For any figures or tables, please contact the authors directly


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_1 | Pages 98 - 98
1 Feb 2020
Doyle R van Arkel R Jeffers J
Full Access

Background. Cementless acetabular cups rely on press-fit fixation for initial stability; an essential pre-requisite to implant longevity. Impaction is used to seat an oversized implant in a pre-prepared bone cavity, generating bone strain, and ‘grip’ on the implant. In certain cases (such as during revision) initial fixation is more difficult to obtain due to poorer bone quality. This increases the chance of loosening and instability. No current study evaluates how a surgeon's impaction technique (mallet mass, mallet velocity and number of strikes) may be used to maximise cup fixation and seating. Questions/purposes. (1) How does impaction technique affect a) bone strain & fixation and b) seating in different density bones? (2) Can an impaction technique be recommended to minimize risk of implant loosening while ensuring seating of the acetabular cup?. Methods. A custom drop tower was used to simulate surgical strikes, seating acetabular cups into a synthetic bone model (Fig. 1). Strike velocity (representing surgeon strike level) and drop mass (representing mallet mass) were varied through representative low, medium and high levels. Polar gap between the implant and bone was measured using optical tracking markers. Strain gauges were used to measure acetabular rim strain. Following seating, cup pushout force was measured in a materials testing machine. Both measurements were used to quantify the level of fixation of the implant for two conditions: For the first, the cup was optimally seated (moving no more than 0.1mm on the previous strike, representing ideal conditions); For the second the cup was impacted 10 times (excessively impacted). Repeats (N = 5) were conducted in low and high density bone; a total of 180 tests. Results. For ideally impacted cups, increasing mallet mass and velocity improved fixation and reduced polar gap. However a phenomenon of bone strain deterioration was identified if an excessive number of strikes were used to seat a cup, resulting in loss of implant fixation. This effect was most severe in low density bone (Fig. 2). For high strike velocity and mallet mass, each excessive strike halved the measured bone strain (78 ± 7 με/strike). This reduced fixation strength from 630 ± 65 N (optimally seated) to just 49 ± 6 N at 10 strikes (Fig. 3). Discussion. These results identify a possible mechanism of loss of implant stability with excessive acetabular impaction. A high mallet mass with low strike velocity resulted in satisfactory fixation (442 ± 38 N) and polar gap (1 ± 0.1 mm) whilst minimizing the fixation deterioration due to excessive mallet strikes. Extreme caution must be exercised to avoid excessive impaction high velocity strikes in low density bone for any mallet mass. Conclusion & Clinical relevance. As it may be difficult for a surgeon to accurately infer when an implant is optimally seated, this study informs surgeons of the effects of different impaction techniques, particularly in lower density bones. For any figures or tables, please contact the authors directly


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_4 | Pages 4 - 4
1 Apr 2019
Wilson C Inglis M George D
Full Access

Introduction. Revision total hip arthroplasty is a complex procedure and becoming more common. Acetabular implant loosening or fracture has previously been treated with a cup and cage construct. Recent studies have shown significant failure rates with Cup Cage constructs in more complex 3B and 3C Acetabular revisions. As a result the use of 3D printed custom made acetabular components has become more common. Method. We present 5 cases with severe acetabular bone loss that were treated with 3D printed acetabular components. The components were manufactured by OSSIS medical in New Zealand. The patient's original femoral stem was retained in all cases. Pre operatively the implant design was approved by the arthroplasty team prior to final manufacture. Implants were provided with a sterilisable model used intraoperatively for reference. Results. Five cases of 3D printed acetabular implants have been used locally for complex revision total hip arthroplasty with no immediate intraoperative or postoperative complications. Follow up of 1 – 5 years. One patient fell, five years post operatively. Sustaining a periprosthetic femur fracture requiring plate fixation, however, the acetabular component remained stable. No patient has undergone surgery for any failure of the acetabular component. Conclusions. This study shows 3D printed custom acetabular implants are efficient and effective in our hands. Early results from the design team suggest improved results compared to TM cup / cage systems. None of the implants have failed for any reason to date


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_6 | Pages 63 - 63
1 Mar 2017
Van Der Straeten C Banica T De Smet A Van Onsem S Sys G
Full Access

Introduction. Systemic metal ion monitoring (Co;Cr) has proven to be a useful screening tool for implant performance to detect failure at an early stage in metal-on-metal hip arthroplasty. Several clinical studies have reported elevated metal ion levels after total knee arthroplasty (TKA), with fairly high levels associated with rotating hinge knees (RHK) and megaprostheses. 1. In a knee simulator study, Kretzer. 2. , demonstrated volumetric wear and corrosion of metallic surfaces. However, prospective in vivo data are scarce, resulting in a lack of knowledge of how levels evolve over time. The goal of this study was to measure serum Co and Cr levels in several types TKA patients prospectively, evaluate the evolution in time and investigate whether elevated levels could be used as an indicator for implant failure. Patients and Methods. The study was conducted at Ghent University hospital. 130 patients undergoing knee arthroplasty were included in the study, 35 patients were lost due to logistic problems. 95 patients with 124 knee prostheses had received either a TKA (primary or revision) (69 in 55 patients), a unicompartimental knee arthroplasty (7 UKA), a RHK (revision −7 in 6 patients) or a megaprosthesis (malignant bone tumours − 28 in 27 patients) (Fig 1). The TKA, UKA and RHK groups were followed prospectively, with serum Co and Cr ions measured preoperatively, at 3,6 and 12 months postoperatively. In patients with a megaprosthesis, metal ions were measured at follow-up (cross-sectional study design). Results (Fig 2 and 3). In primary knees, we did not observe an increase in serum metal ion levels at 3, 6 or 12 months. Two patients with a hip arthroplasty had elevated preTKA Co and Cr levels. There was no difference between unilateral and bilateral knee prostheses. In the revision group, elevated pre-revision levels were found in 2 failures for implant loosening. In both cases, ion levels decreased postoperatively. In revisions with a standard TKA, there was no significant increase in metal ions compared to primary knee arthroplasty. RHK were associated with a significant increase in Co levels even at short-term (3–12 months). The megaprosthesis group had the highest metal ion levels and showed a significant increase in Co and Cr with time in patients followed prospectively. With the current data, we could not demonstrate a correlation between metal ion levels, size of the implant or length of time in situ. Discussion. In primary knee arthroplasty with a standard TKA or UKA, metal ion levels were not elevated till one year postoperatively. This suggests a different mechanism of metal ion release in comparison to metal-on-metal hip arthroplasties. In two cases of revision for implant loosening, pre-revision levels were elevated, possibly associated with component wear, and decreased after revision. With RHK, slightly elevated ion levels were found prospectively. Megaprostheses had significantly elevated Co and Cr levels, due to corrosion of large metallic surfaces and/or wear of components which were not perfectly aligned during difficult reconstruction after tumour resection. Further research is needed to assess the clinical relevance of metal ion levels in knee arthroplasty. For any figures or tables, please contact authors directly (see Info & Metrics tab above).