Advertisement for orthosearch.org.uk
Results 1 - 5 of 5
Results per page:
Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_10 | Pages 58 - 58
1 Oct 2022
Cecotto L van Kessel K Wolfert M Vogely H van der Wal B Weinans H van Strijp J Yavari SA
Full Access

Aim. In the current study we aim to characterize the use of cationic host defense peptides (HDPs) as alternative antibacterial agents to include into novel antibacterial coatings for orthopedic implants. Staphyloccous aureus represent one the most challenging cause of infections to treat by traditional antibacterial therapies. Thanks to their lack of microbial resistance described so far, HDPs represent an attractive therapeutic alternative to antibiotics. Furthermore, HDPs have been showed to control infections via a dual function: direct antimicrobial activity and regulation of immune response. However, HDPs functions characterization and comparison is controversial, as changing test conditions or cell type used might yield different effects from the same peptide. Therefore, before moving towards the development of HDP-based coatings, we need to characterize and compare the immunomodulatory and antibacterial functions under the same conditions in vitro of 3 well-known cathelicidins: human LL-37, chicken CATH-2, and bovine-derived IDR-1018. Method. S. aureus, strain SH1000, was incubated with different concentrations of each HDP and bacterial growth was monitored overnight. Primary human monocytes were isolated from buffy coats using Ficoll-Paque density and CD14 microbeads, and differentiated for 7 days to macrophages. After 24h incubation in presence of LPS and HDPs, macrophages cytokines production was measured by ELISA. Macrophages cultured for 24h in presence of HDPs were infected with serum-opsonized S. aureus. 30 min and 24h after infection, bacterial phagocytosis and intracellular killing by macrophages were measured by flow cytometry and colony forming units (CFU) count respectively. Results. All HDPs efficiently inhibit macrophages LPS-mediated activation, as observed by a reduced production of TNF-α and IL-10. Despite a comparable anti-inflammatory action, only CATH-2 shows direct antibacterial properties at concentrations 10-times lower than those needed to stimulate immune cells. Although stimulation with HDPs fails to improve macrophages ability to kill intracellular S. aureus, IDR-1018 decreases the proportion of cells phagocytosing bacteria. Conclusions. In addition to a strong anti-inflammatory effect provided by all HDPs tested, CATH-2 has direct antibacterial effects while IDR-1018 reduces the proportion of macrophages infected by S. aureus. Use of these HDPs in combination with each other or with other conventional antibacterial agents could lead the way to the design of novel antibacterial coatings for orthopedic implants


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_8 | Pages 9 - 9
10 May 2024
Owen D
Full Access

Background. Increasing evidence suggests a link between the bearing surface used in total hip arthroplasty (THA) and the occurrence of infection. It is postulated that polyethylene has immunomodulatory effects and may influence bacterial function and survival, thereby impacting the development of periprosthetic joint infection (PJI). This study aimed to investigate the association between polyethylene type and revision surgery for PJI in THA using data from the Australian Orthopaedic Association National Joint Replacement Registry (AOANJRR). We hypothesized that the use of XLPE would demonstrate a statistically significant reduction in revision rates due to PJI compared to N-XLPE. Methods. Data from the Australian Orthopaedic Association National Joint Replacement Registry (AOANJRR) spanning September 1, 1999, to December 31, 2021, were used to compare the infection revision rates between THA using N-XLPE and XLPE. We calculated the Cumulative Percentage Revision rate (CPR) and Hazard Ratio (HR) while controlling for factors like age, sex, body mass index (BMI), American Society of Anesthesiologists’ (ASA) grade, and head size. Results. From the total 361,083 primary THAs, 26,827 used N-XLPE and 334,256 used XLPE. Excluding data from the first 6 months post-surgery, 220 revisions occurred in the N-XLPE group and 1,055 in the XLPE group for PJI. The HR for infection revision was significantly higher in N-XLPE compared to XLPE, at 1.64 (95% CI, 1.41–1.90, p<0.001). Conclusions. This analysis provides evidence of an association between N-XLPE and revision for infection in THA. We suspect that polyethylene wear particles contribute to the susceptibility of THA to PJI, resulting in a significantly higher risk of revision for infection in N-XLPE hips compared to those with XLPE. Level of Evidence. Therapeutic Level III


Bone & Joint Open
Vol. 2, Issue 9 | Pages 721 - 727
1 Sep 2021
Zargaran A Zargaran D Trompeter AJ

Aims

Orthopaedic infection is a potentially serious complication of elective and emergency trauma and orthopaedic procedures, with a high associated burden of morbidity and cost. Optimization of vitamin D levels has been postulated to be beneficial in the prevention of orthopaedic infection. This study explores the role of vitamin D in orthopaedic infection through a systematic review of available evidence.

Methods

A comprehensive search was conducted on databases including Medline and Embase, as well as grey literature such as Google Scholar and The World Health Organization Database. Pooled analysis with weighted means was undertaken.


Bone & Joint Open
Vol. 1, Issue 9 | Pages 605 - 611
28 Sep 2020
McKean D Chung SL Fairhead R Bannister O Magliano M Papanikitas J Wong N Hughes R

Aims

To describe the incidence of adverse clinical outcomes related to COVID-19 infection following corticosteroid injections (CSI) during the COVID-19 pandemic. To describe the incidence of positive SARS-CoV-2 reverse transcriptase polymerase chain reaction (RT-PCR) testing, positive SARS-COV2 IgG antibody testing or positive imaging findings following CSI at our institution during the COVID-19 pandemic.

Methods

A retrospective observational study was undertaken of consecutive patients who had CSI in our local hospitals between 1 February and 30June 2020. Electronic patient medical records (EPR) and radiology information system (RIS) database were reviewed. SARS-CoV-2 RT-PCR testing, SARS-COV2 IgG antibody testing, radiological investigations, patient management, and clinical outcomes were recorded. Lung findings were categorized according to the British Society of Thoracic Imaging (BSTI) guidelines. Reference was made to the incidence of lab-confirmed COVID-19 cases in our region.


The Bone & Joint Journal
Vol. 96-B, Issue 3 | Pages 291 - 298
1 Mar 2014
Murray IR Corselli M Petrigliano FA Soo C Péault B

The ability of mesenchymal stem cells (MSCs) to differentiate in vitro into chondrocytes, osteocytes and myocytes holds great promise for tissue engineering. Skeletal defects are emerging as key targets for treatment using MSCs due to the high responsiveness of bone to interventions in animal models. Interest in MSCs has further expanded in recognition of their ability to release growth factors and to adjust immune responses.

Despite their increasing application in clinical trials, the origin and role of MSCs in the development, repair and regeneration of organs have remained unclear. Until recently, MSCs could only be isolated in a process that requires culture in a laboratory; these cells were being used for tissue engineering without understanding their native location and function. MSCs isolated in this indirect way have been used in clinical trials and remain the reference standard cellular substrate for musculoskeletal engineering. The therapeutic use of autologous MSCs is currently limited by the need for ex vivo expansion and by heterogeneity within MSC preparations. The recent discovery that the walls of blood vessels harbour native precursors of MSCs has led to their prospective identification and isolation. MSCs may therefore now be purified from dispensable tissues such as lipo-aspirate and returned for clinical use in sufficient quantity, negating the requirement for ex vivo expansion and a second surgical procedure.

In this annotation we provide an update on the recent developments in the understanding of the identity of MSCs within tissues and outline how this may affect their use in orthopaedic surgery in the future.

Cite this article: Bone Joint J 2014;96-B:291–8.