INTRODUCTION. There is increasing evidence for a multi-stage model of rotator cuff (RC) tendon tears, wherein healing is affected by tear size. The underlying pathophysiology however is not fully understood. Changes in the production and remodeling of the RC extracellular matrix (ECM) are likely to be important determinants of RC tendinopathy as they affect healing and the ability to bear loads. This study aimed to gain greater insight into size related tear pathogenesis by analyzing gene expression profiles from normal, small and massive RC tears. METHODS. The genetic profiles of 28 human RC tendons were analyzed using microarrays representing the entire genome. 11 massive and 5 small torn RC tendon specimens were obtained from tear edges intraoperatively, and compared to 12 age matched normal controls. Semiquantitative real-time polymerase chain reaction (RT-PCR) and
Our unpublished data has indicated that the perivascular stem cells (PSCs) have increased chondrogenic potential compared to mesenchymal stem cells (MSCs) derived in culture. There has been a recent change in the theory that stem cells work by a paracrine effect rather than differentiation. There are minimal data demonstrating the persistence of implanted stem cells when used for engraftment. This study aimed to develop an autologous large animal model for perivascular stem cells as well as to determine if cells were retained in the articular cartilage defects. The reactivity of anti-human and anti-ovine antibodies was ascertained using
Nanoscale topography increases the bioactivity of a material and stimulates specific responses (third generation biomaterial properties) at the molecular level upon first generation (bioinert) or second generation (bioresorbable or bioactive) biomaterials. We developed a technique (based upon the effects of nanoscale topography) that facilitated the in vitro expansion of bone graft for subsequent implantation and investigated the optimal conditions for growing new mineralised bone in vitro. Two topographies (nanopits and nanoislands) were embossed into the bioresorbable polymer Polycaprolactone (PCL). Three dimensional cell culture was performed using double-sided embossing of substrates, seeding of both sides, and vertical positioning of substrates. The effect of Hydroxyapatite, and chemical stimulation were also examined. Human bone marrow was harvested from hip arthroplasty patients, the mesenchymal stem cells culture expanded and used for cellular analysis of substrate bioactivity. The cell line specificity and osteogenic behaviour was demonstrated through
Introduction. Our previous study using microarray analysis showed that Rad (Ras associated with diabetes) was highly expressed in nonunion. The purpose of this study is to investigate the gene expression and immunolocalization of Rad, and other Ras-related G proteins: Rem1 and Rem2 in fracture/nonunion site using rat experimental models. Hypothesis. We hypothesized that Rad had a significant role in nonunion formation. Materials & Methods. For standard healing model, K-wire was inserted into the femur and a closed fracture was created. Nonunion model was produced by periosteal cauterization at the fracture site. At post-fracture days 3, 7, 10, 14, 21, and 28, RNA was extracted from callus or fibrous tissue for real-time PCR. At day 14, specimens were harvested for
The biomembrane (induced membrane) formed around polymethylmethacrylate (PMMA) spacers has value in clinical applications for bone defect reconstruction. Few studies have evaluated its cellular, molecular or stem cell features. Our objective was to characterise induced membrane morphology, molecular features and osteogenic stem cell characteristics. Following Institutional Review Board approval, biomembrane specimens were obtained from 12 patient surgeries for management of segmental bony defects (mean patient age 40.7 years, standard deviation 14.4). Biomembranes from nine tibias and three femurs were processed for morphologic, molecular or stem cell analyses. Gene expression was determined using the Affymetrix GeneChip Operating Software (GCOS). Molecular analyses compared biomembrane gene expression patterns with a mineralising osteoblast culture, and gene expression in specimens with longer spacer duration (> 12 weeks) with specimens with shorter durations. Statistical analyses used the unpaired student Objectives
Methods